解决方案:GBDT、LightGBM 跟 XGBoost ,这三者有什么区别


一、现象

在工作中,在机器学习中,GBDT、LightGBM 跟 XGBoost是比较重要的知识点,所以整理一下

二、解决方案

GBDT(Gradient Boosting Decision Trees)、XGBoost 和 LightGBM 都是基于梯度提升的集成学习算法,用于构建决策树序列,每棵树都尝试修正前一棵树的错误。下面是这三种算法的主要区别:

  1. GBDT

    • 是一种经典的梯度提升算法,通过逐步添加决策树来减少残差。
    • 通常使用CART(分类和回归树)作为基学习器。
    • 在每一层增长新的决策树时,可能会考虑所有可能的分裂来找到最佳分裂点,这在数据量大时会导致计算效率较低 。
    • GBDT在优化的时候只用到一阶导数信息,XGBoost则对损失函数进行了二阶泰勒展开,得到一阶和二阶导数
  2. XGBoost(eXtreme Gradient Boosting):

    • 是GBDT的一个优化实现,引入了正则化项来控制模型复杂度,有助于防止过拟合。
    • xgboost采用的是level-wise的分裂策略,对每一层所有节点做无差别分裂,可能有些节点的增益非常小,对结果影响不大,但是xgboost也进行了分裂,带来了不必要的开销
    • 支持缺失值处理,并且可以指定稀疏数据的特征。
    • 支持并行处理,拥有高效的计算性能。
    • 使用了近似算法和缓存优化,提高了计算效率 。
  3. LightGBM

    • 基于梯度提升框架,使用基于直方图的决策树算法,显著提升了训练速度和降低了内存占用。
    • 采用叶子生长策略(leaf-wise growth),每次选择分裂增益最大的叶子节点进行分裂。
    • 支持类别特征和高维数据的处理。
    • 支持特征并行和数据并行,适合分布式计算 。

区别

  • 训练速度:LightGBM 通常比 XGBoost 和 GBDT 快,尤其是在大数据集上。
  • 内存使用:LightGBM 通常比 XGBoost 和 GBDT 使用更少的内存。
  • 处理大数据集:LightGBM 和 XGBoost 都非常适合处理大规模数据集,但LightGBM可能在速度上有优势。
  • 类别特征处理:XGBoost 和 LightGBM 都支持类别特征,但 LightGBM 的处理可能更高效。
  • 防止过拟合:XGBoost 通过正则化项更好地防止过拟合,而 LightGBM 通过调整参数如最大深度和最小数据分裂来控制。

总的来说,XGBoost 是一个非常强大的梯度提升库,适用于各种规模的数据集,而 LightGBM 在处理大数据集时表现更好,速度更快,内存使用更少。GBDT 作为基础算法,提供了算法的原型,但在实际应用中可能会因为效率问题而选择其优化版本 XGBoost 或 LightGBM。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值