本示例说明了如何应用imfilter
函数,使用包含相等权重的5×5滤镜(通常称为平均滤镜)对2D灰度图像进行滤波。该示例还显示了如何使用相同的滤镜对真彩色(RGB)图像进行滤波。真彩色图像是大小为[m,n,3]的矩阵,其中最后一维表示三个颜色通道。使用2-D滤镜滤波真彩色图像等效于使用相同的2-D滤镜分别滤波图像的每个平面。
有几种执行2D和多维滤波的MATLAB®函数可以与imfilter
进行比较。函数filter2
执行二维相关,conv2
执行二维卷积,convn
执行多维卷积。但是,这些滤波功能中的每一个始终将输入转换为double
,而输出始终为double
。同样,这些MATLAB®滤波函数始终假定输入为零填充,并且不支持其他填充选项。相反,imfilter
不会将输入图像转换为double
。该imfilter
功能还提供了一组灵活的边界填充选项。
使用均值滤波器滤波二维灰度图像
将灰度图像读取到工作区中。
I = imread('coins.png');
显示原始图像。
figure
imshow(I)
title('Original Image')
创建一个标准化的5×5均值滤波器。
h = ones(5,5)/25;
使用imfilter
,将均值滤波器应用于灰度图像。
I2 = imfilter(I,h);
显示滤波后的图像。
figure
imshow(I2)
title('Filtered Image')
使用imfilter滤波多维真彩(RGB)图像
将真彩色图像读入工作区。
rgb = imread('peppers.png');
imshow(rgb);
创建一个滤波器。该均值滤波器包含相等的权重,并使滤波的图像看起来比原始图像更加模糊。
h = ones(5,5)/25;
使用imfilter
滤波图像并显示。
rgb2 = imfilter(rgb,h);
figure
imshow(rgb2)
注:本文根据MATLAB官网内容修改而成。
欢迎您进一步了解以下MATLAB系列文章:
吃小羊:MATLAB作图实例:00:索引zhuanlan.zhihu.com