python混合整数线性规划_【Python代码】混合整数规划MIP/线性规划LP+python(ortool库)实现...

本文介绍了线性规划(LP)和混合整数规划(MIP)的概念,并通过Python的ortool库展示了如何解决MIP问题。文章提供了详细代码示例,解释了如何定义变量、约束和目标函数,以及如何验证最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关知识点

LP线性规划问题

Linear Problem

[百度百科]:研究线性约束条件下线性目标函数的极值问题的数学理论和方法。

学过运筹学的小伙伴,可以看这个LP问题的标准型来回顾一下:

9d9b7b62b5cdbb201a84b2fd0ca95ab7.png

不太熟悉的朋友可以看这个例题,再结合上面的标准型,来感受一下:

9a006668ee1e2ffb038a042870027b5e.png

MIP混合整数规划

Mixed Integar Planing

混合整数规划是LP的一种,决策变量部分是整数,不要求全部都是整数的规划问题。

这里MIP的求解器是使用CBC(Corn-or Branch and Cut)

CBC (COIN-OR Branch and Cut) is an open-source mixed integer programming solver working with the COIN-OR LP solver CLP and the COIN-OR Cut generator library Cgl. The code has been written primarily by John J. Forrest. 更多详情看这里,但是笔者认为没啥必要。

MIP的Python实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值