常见激活函数总结

在这里插入图片描述

1. sigmoid

在这里插入图片描述在这里插入图片描述

公式:
s i g m o i d ( z ) = 1 1 + e − z sigmoid(z) = \frac {1} {1+e^{-z }} sigmoid(z)=1+ez1
sigmoid能够把输入映射到0和1之间,在物理上最接 近神经元,可以被表示成概率,或者用于数据的归 一化。但是它有两个严重的缺陷:

  • 其一,梯度消失——导数 f’(x)=f(x)(1-f(x)), 当x趋于无穷时,f(x)的两侧导数逐渐趋于0。在后 向传递时,sigmoid向下传递的梯度包含了一个 f’(x)因子,因此,一旦落入两端的平滑区,f’(x) 就变得接近于0,导致了向后传递的梯度也非常小。 此时,网络参数很难得到有效训练,这种现象被称 为梯度消失,一般在5层以内就会产生梯度消失的现象。
  • 其二,Sigmoid 的 output 不是0均值(即zero-centered)。这是不可取的,因为这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。 产生的一个结果就是:如 x > 0 , f = w T x + b x > 0 x>0, f=w^Tx+bx>0 x>0,f=wTx+bx>0,那么对w求局部梯度则都为正,这样在反向传播的过程中w要么都往正方向更新,要么都往负方向更新,导致有一种捆绑的效果,使得收敛缓慢。 当然了,如果按batch去训练,那么那个batch可能得到不同的信号,所以这个问题还是可以缓解一下的。因此,非0均值这个问题虽然会产生一些不好的影响,不过跟上面提到的梯度消失问题相比还是要好很多的。

2. tanh

tanh函数图像及其导函数:
在这里插入图片描述

公式:
t a n h ( z ) = e z − e − z e z + e − z tanh(z) = \frac{e^z-e^{-z}}{e^z+e^{-z}} tanh(z)=ez+ezezez

它解决了Sigmoid函数的不是zero-centered输出问题,然而,梯度消失(gradient vanishing)的问题和幂运算的问题仍然存在。

3. ReLU

ReLU图像及其导函数图像
在这里插入图片描述
公式:
R e l u ( z ) = m a x ( 0 , x ) Relu(z) = max(0,x) Relu(z)=max(0,x)

ReLU函数其实就是一个取最大值函数,注意这并不是全区间可导的,但是我们可以取sub-gradient,如上图所示。ReLU虽然简单,但却是近几年的重要成果,有以下几大优点:
1) 解决了gradient vanishing问题 (在正区间)
2)计算速度非常快,只需要判断输入是否大于0
3)收敛速度远快于sigmoid和tanh

ReLU也有几个需要特别注意的问题:
1)ReLU的输出不是zero-centered
2)Dead ReLU Problem,指的是某些神经元可能永远不会被激活,导致相应的参数永远不能被更新。有两个主要原因可能导致这种情况产生: (1) 非常不幸的参数初始化,这种情况比较少见 (2) learning rate太高导致在训练过程中参数更新太大,不幸使网络进入这种状态。解决方法是可以采用Xavier初始化方法,以及避免将learning rate设置太大或使用adagrad等自动调节learning rate的算法。

尽管存在这两个问题,ReLU目前仍是最常用的activation function,在搭建人工神经网络的时候推荐优先尝试!

4.leaky ReLU

在这里插入图片描述
函数表达式:
f ( x ) = m a x ( α x , x ) f(x)=max(αx,x) f(x)=max(αx,x)
人们为了解决Dead ReLU Problem,提出了将ReLU的前半段设为αxαx而非0,通常α=0.01α=0.01。另外一种直观的想法是基于参数的方法,即 P a r a m e t r i c R e L U : f ( x ) = m a x ( α x , x ) ParametricReLU:f(x)=max(αx,x) ParametricReLU:f(x)=max(αx,x),其中α
可由方向传播算法学出来。理论上来讲,Leaky ReLU有ReLU的所有优点,外加不会有Dead ReLU问题,但是在实际操作当中,并没有完全证明Leaky ReLU总是好于ReLU。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值