文章目录
-
-
- 引文
- 主要思想
- 分治算法的步骤
- 分治法适用的情况
-
- [1. 多数元素](https://leetcode-cn.com/problems/majority-element/)
- [2. 最大子序和](https://leetcode-cn.com/problems/maximum-subarray/)
- [3. Pow(x, n)](https://leetcode-cn.com/problems/powx-n/)
- [4. 重建二叉树](https://leetcode-cn.com/problems/zhong-jian-er-cha-shu-lcof/)
- [5. 数组中的逆序对](https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof/)
- 我自己的经验总结:
-
引文
MapReduce(分治算法的应用) 是 Google 大数据处理的三驾马车之一,另外两个是 GFS 和 Bigtable。它在倒排索引、PageRank 计算、网页分析等搜索引擎相关的技术中都有大量的应用。
尽管开发一个 MapReduce 看起来很高深,感觉遥不可及。实际上,万变不离其宗,它的本质就是分治算法思想,分治算法。如何理解分治算法?为什么说 MapRedue 的本质就是分治算法呢?
主要思想
分治算法的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。将子问题逐个击破(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案。
分治算法的步骤
- 分:递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题);
- 治:将这些规模更小的子问题逐个击破;
- 合:将已解决的子问题逐层合并,最终得出原问题的解;
分治法适用的情况
- 原问题的计算复杂度随着问题的规模的增加而增加。
- 原问题能够被分解成更小的子问题。
- 子问题的结构和性质与原问题一样,并且相互独立,子问题之间不包含公共的子子问题。
- 原问题分解出的子问题的解可以合并为该问题的解。
1. 多数元素
-
题目描述
给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 [n/2] 的元素。
你可以假设数组是非空的,并且给定的数组总是存在众数。
示例 1:
输入: [3,2,3] 输出: 3
示例 2:
输入: [2,2,1,1,1,2,2] 输出: 2
-
解题思路
-
确定切分的终止条件
直到所有的子问题都是长度为 1 的数组,停止切分。
-
准备数据,将大问题切分为小问题
递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回
-
处理子问题得到子结果,并合并
-
长度为 1 的子数组中唯一的数显然是众数,直接返回即可。
-
如果它们的众数相同,那么显然这一段区间的众数是它们相同的值。
-
如果他们的众数不同,比较两个众数在整个区间内出现的次数来决定该区间的众数
-
-
-
代码
class Solution(object): def majorityElement2(self, nums): """ :type nums: List[int] :rtype: int """ # 【不断切分的终止条件】 if not nums: return None if len(nums) == 1: return nums[0] # 【准备数据,并将大问题拆分为小问题】 left = self.majorityElement(nums[:len(nums)//2]) right = self.majorityElement(nums[len(nums)//2:]) # 【处理子问题,得到子结果】 # 【对子结果进行合并 得到最终结果】 if left == right: return left if nums.count(left) > nums.count(right): return left else: return right
2. 最大子序和
-
题目描述
给定一个整数数组
nums
,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。示例:
输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大为6。
-
解题思路
-
确定切分的终止条件
直到所有的子问题都是长度为 1 的数组,停止切分。
-
准备数据,将大问题切分为小问题
递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回
-
处理子问题得到子结果,并合并
-
将数组切分为左右区间
- 对与左区间:从右到左计算左边的最大子序和
- 对与右区间:从左到右计算右边的最大子序和
-
由于左右区间计算累加和的方向不一致,因此,左右区间直接合并相加之后就是整个区间的和
-
最终返回左区间的元素、右区间的元素、以及整个区间(相对子问题)和的最大值
-
-
-
代码
class Solution(object): def maxSubArray(self, nums): """ :type nums: List[int] :rtype: int """ # 【确定不断切分的终止条件】 n = len(nums) if n == 1: return nums[0] # 【准备数据,并将大问题拆分为小的问题】 left = self.maxSubArray(nums