分类刷题1——分治

本文详细介绍了分治算法的思想、步骤,并列举了多个应用案例,包括多数元素、最大子序和、Pow(x, n)、重建二叉树以及数组中的逆序对问题。通过这些案例,阐述了如何运用分治法解决问题,并分享了个人的经验总结。" 108572387,8535427,VOS服务状态全面检查指南,"['运维', '系统管理', '网络服务', '数据库管理']
摘要由CSDN通过智能技术生成

引文

MapReduce(分治算法的应用) 是 Google 大数据处理的三驾马车之一,另外两个是 GFS 和 Bigtable。它在倒排索引、PageRank 计算、网页分析等搜索引擎相关的技术中都有大量的应用。

尽管开发一个 MapReduce 看起来很高深,感觉遥不可及。实际上,万变不离其宗,它的本质就是分治算法思想,分治算法。如何理解分治算法?为什么说 MapRedue 的本质就是分治算法呢?

主要思想

分治算法的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。将子问题逐个击破(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案。

分治算法的步骤

  • 分:递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题);
  • 治:将这些规模更小的子问题逐个击破
  • 合:将已解决的子问题逐层合并,最终得出原问题的解;

分治法适用的情况

  • 原问题的计算复杂度随着问题的规模的增加而增加。
  • 原问题能够被分解成更小的子问题。
  • 子问题的结构和性质与原问题一样,并且相互独立,子问题之间不包含公共的子子问题。
  • 原问题分解出的子问题的解可以合并为该问题的解。
1. 多数元素
  • 题目描述

    给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 [n/2] 的元素。

    你可以假设数组是非空的,并且给定的数组总是存在众数。

    示例 1:

    输入: [3,2,3]
    输出: 3
    

    示例 2:

    输入: [2,2,1,1,1,2,2]
    输出: 2
    
  • 解题思路

    • 确定切分的终止条件

      直到所有的子问题都是长度为 1 的数组,停止切分。

    • 准备数据,将大问题切分为小问题

      递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回

    • 处理子问题得到子结果,并合并

      • 长度为 1 的子数组中唯一的数显然是众数,直接返回即可。

      • 如果它们的众数相同,那么显然这一段区间的众数是它们相同的值。

      • 如果他们的众数不同,比较两个众数在整个区间内出现的次数来决定该区间的众数

  • 代码

    class Solution(object):
        def majorityElement2(self, nums):
            """
            :type nums: List[int]
            :rtype: int
            """
            # 【不断切分的终止条件】
            if not nums:
                return None
            if len(nums) == 1:
                return nums[0]
            # 【准备数据,并将大问题拆分为小问题】
            left = self.majorityElement(nums[:len(nums)//2])
            right = self.majorityElement(nums[len(nums)//2:])
            # 【处理子问题,得到子结果】
            # 【对子结果进行合并 得到最终结果】
            if left == right:
                return left
            if nums.count(left) > nums.count(right):
                return left
            else:
                return right    
    
2. 最大子序和
  • 题目描述

    给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

    示例:

    输入: [-2,1,-3,4,-1,2,1,-5,4],
    输出: 6
    解释: 连续子数组 [4,-1,2,1] 的和最大为6。
    
  • 解题思路

    • 确定切分的终止条件

      直到所有的子问题都是长度为 1 的数组,停止切分。

    • 准备数据,将大问题切分为小问题

      递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回

    • 处理子问题得到子结果,并合并

      • 将数组切分为左右区间

        • 对与左区间:从右到左计算左边的最大子序和
        • 对与右区间:从左到右计算右边的最大子序和
      • 由于左右区间计算累加和的方向不一致,因此,左右区间直接合并相加之后就是整个区间的和

      • 最终返回左区间的元素、右区间的元素、以及整个区间(相对子问题)和的最大值

  • 代码

    class Solution(object):
        def maxSubArray(self, nums):
            """
            :type nums: List[int]
            :rtype: int
            """
            # 【确定不断切分的终止条件】
            n = len(nums)
            if n == 1:
                return nums[0]
    
            # 【准备数据,并将大问题拆分为小的问题】
            left = self.maxSubArray(nums
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值