机器学习数学基础1

机器学习
  1. 什么是机器学习?
    设计一个模型,通过已有数据(训练数据)按照一定的方式(性能度量进行学习,通过不断改进调整优化模型参数,并将模型用于预测相关问题
  2. 机器学习做什么?
    解决:给定数据的预测问题(数据清洗、特征选择、算法模型设计、参数优化、结果预测)
    不能解决:大数据存储/并行计算、机器人制作
  3. 机器学习一般流程
    数据收集、数据清洗、特征工程、数据建模
导数
  1. 一阶导数
    曲线斜率,反映曲线变化快慢,一阶导数为零的点且驻点
  2. 二阶导数
    斜率变化快慢的反映,表征曲线的凹凸性,二阶导数为零的点为拐点
  3. 方向导数
    在这里插入图片描述
  4. 梯度
    在这里插入图片描述
伽马函数

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值