文章目录
[1]杨海民,潘志松,白玮.时间序列预测方法综述[J].计算机科学,2019,46(01):21-28.
摘要:本文着重介绍了 传统的时间序列预测方法、基于机器学习的时间序列预测方法 和基于参数模型的在线时间序列预测方法。
1 什么是时间序列?
时间序列是按照时间排序的一组随机变量,它通常是在相等间隔的时间段内依照给定的采样率对某种潜在过程进行观测的结果。
时间序列是按照时间排序的一组随机变量,它通常是在相等间隔的时间段内依照给定的采样率对某种潜在过程进行观测的结果。
总之,目前时间序列数据正以不可预测的速度产生于几乎每一个应用领域。
时间序列数据的研究方法主要包括:分类、聚类和回归预测等方面。
2 时间预测方法的核心
时间序列数据本质上反映的是某个或者某些随机变量随时间不断变化的趋势,而时间序列预测方法的核心就是从数据中挖掘出这种规律,并利用其对将来的数据做出估计。
3 时间序列数据的特点
- (最大)当前时刻的数据值与之前时刻的数据值存在联系,该特点表明过去的数据已经暗示了现在或者将来数据发展变化的规律,包括趋势性、周期性和不规则性。
- 平稳性和非平稳性。
- 数据规模不断增大。如果仅仅把时间序列看作单纯的一维向量来处理,则不可避免地会带来维数灾难等问题。