目录
时间序列分析方法1主要有:时间序列分解模型、指数平滑模型、ARIMA模型。
一、方法简介
| 方法 | 简介 |
|---|---|
| 时间序列分解模型 | 该模型认为某一经济变量时间序列Yt主要由长期趋势T、季节变动S、周期变动C和不规则变动I四种因素构成,Yt是这四种因素的函数。 Y t = f ( |
本文介绍了ARIMA模型在时间序列分析中的建模过程,包括数据读取、自相关图、平稳性检验、差分、选择合适的p,q值,以及模型检验和预测。通过对数据的差分和模型选择,最终确定ARIMA(0,1)模型为最佳模型,并进行了未来9日的预测。"
106435132,8707873,理解Java静态代码块的执行顺序,"['Java', '编程基础', '类加载', '对象初始化']
时间序列分析方法1主要有:时间序列分解模型、指数平滑模型、ARIMA模型。
| 方法 | 简介 |
|---|---|
| 时间序列分解模型 | 该模型认为某一经济变量时间序列Yt主要由长期趋势T、季节变动S、周期变动C和不规则变动I四种因素构成,Yt是这四种因素的函数。 Y t = f ( |
5800

被折叠的 条评论
为什么被折叠?
