主要内容
本文提出了一种基于条件变分编码器的场景生成方法,其优势在于生成过程完全依靠数据驱动,无需概率建模,生成的数据在保证多样性的同时能很好地反映实际发电单元的时空特性,并且无需场景约简,同时通过GPU并行计算,大大提高了场景生成效率。本文通过实际算例从单一发电单元、区域多发电单元、指定标签场景三方面验证了算法的有效性。
本文采用网络结构如图1所示。
图1 变分编码器网络结构
针对单一发电单元,所提方法能充分拟合样本数据的概率分布,同时兼顾其波动性特点,生成效果如图2所示。
图2 测试集数据与生成数据特点
对于多发电单元,生成模型所生成数据能反映机组之间的相关性规律,如图3所示。
图3 历史数据、生成数据机组相关性对比
结论
生成模型能以所学习到的特征创造