matlab风电光伏场景模拟,天津大学王守相等:深度生成模型在光伏风电随机场景生成中的典型应用...

本文提出了一种基于条件变分编码器的风电光伏场景生成方法,该方法无需概率建模,能有效反映发电单元的时空特性,通过GPU加速提高生成效率。实际算例证明了该算法在单一发电单元、多发电单元和指定标签场景生成中的有效性。
摘要由CSDN通过智能技术生成

主要内容

本文提出了一种基于条件变分编码器的场景生成方法,其优势在于生成过程完全依靠数据驱动,无需概率建模,生成的数据在保证多样性的同时能很好地反映实际发电单元的时空特性,并且无需场景约简,同时通过GPU并行计算,大大提高了场景生成效率。本文通过实际算例从单一发电单元、区域多发电单元、指定标签场景三方面验证了算法的有效性。

本文采用网络结构如图1所示。

bc6a74f2cca3d7f22da074a853e0c8b6.png

图1 变分编码器网络结构

针对单一发电单元,所提方法能充分拟合样本数据的概率分布,同时兼顾其波动性特点,生成效果如图2所示。

fb6d6d24f7023adcac0be075ad09dc2d.png

图2 测试集数据与生成数据特点

对于多发电单元,生成模型所生成数据能反映机组之间的相关性规律,如图3所示。

39b3b6b1ed4c48aadf486e09732feb8e.png

图3 历史数据、生成数据机组相关性对比

结论

生成模型能以所学习到的特征创造

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值