【自然语言处理】词性标注-HMM算法

这篇主要是利用HMM解决序列标注问题,词性标注问题,也就是解码问题,观测序列就是我们的句子,状态序列y是我们的分词结果,我们用Viterbi算法来求解最大概率对应的状态序列y,也就是最有可能出现的状态序列。

traindata.txt的数据格式

Newsweek/NNP
,/,
trying/VBG
to/TO
keep/VB
pace/NN
with/IN
rival/JJ
Time/NNP
magazine/NN
,/,
announced/VBD
new/JJ
advertising/NN
rates/NNS
for/IN
1990/CD
and/CC
said/VBD
it/PRP
will/MD
tag2id, id2tag = {}, {}  # maps tag to id . tag2id: {"VB": 0, "NNP":1,..} , id2tag: {0: "VB", 1: "NNP"....}
word2id, id2word = {}, {} # maps word to id

for line in open('traindata.txt'):
    items = line.split('/')
    word, tag = items[0], items[1].rstrip()  # 抽取每一行里的单词和词性
    
    if word not in word2id:
        word2id[word] = len(word2id)
        id2word[len(id2word)] = word
    if tag not in tag2id:
        tag2id[tag] = len(tag2id)
        id2tag[len(id2tag)] = tag

M = len(word2id)  # M: 词典的大小、# of words in dictionary
N = len(tag2id)   # N: 词性的种类个数  # of tags in tag set
# 构建 pi, A, B
import numpy as np
pi = np.zeros(N)   # 每个词性出现在句子中第一个位置的概率,  N: # of tags  pi[i]: tag i出现在句子中第一个位置的概率
A = np.zeros((N, M)) # A[i][j]: 给定tag i, 出现单词j的概率。 N: # of tags M: # of words in dictionary
B = np.zeros((N,N))  # B[i][j]: 之前的状态是i, 之后转换成转态j的概率 N: # of tags

prev_tag = ""
for line in open('traindata.txt'):
    items = line.split('/')
    wordId, tagId = word2id[items[0]], tag2id[items[1].rstrip()]
    if prev_tag == "":  # 这意味着是句子的开始
        pi[tagId] += 1
        A[tagId][wordId] += 1
    else:  # 如果不是句子的开头
        A[tagId][wordId] += 1
        B[tag2id[prev_tag]][tagId] += 1
    
    if items[0] == ".":
        prev_tag = ""
    else:
        prev_tag = items[1].rstrip()

# normalize
pi = pi/sum(pi)
for i in range(N):
    A[i] /= sum(A[i])
    B[i] /= sum(B[i])

#  到此为止计算完了模型的所有的参数: pi, A, B
def log(v):
    if v == 0:
        return np.log(v+0.000001)
    return np.log(v)

viterbi算法本来是用动态规划来求最短路的,不是专门给HMM设计的,只是恰好可以求解HMM的解码问题。求解给定观测值x后概率最大的状态序列y,如果使用穷举法会带来巨大的计算量,所以viterbi对状态进行转移,而状态数往往是比较少的。

算法思路大概是:从根节点出发,每走一步,比较根节点到上层节点的最短路径+上层节点到当前节点的最短距离,递归计算到达该点的最短路径,一直走到终点。

def viterbi(x, pi, A, B):
    """
    x: user input string/sentence: x: "I like playing soccer"
    pi: initial probability of tags
    A: 给定tag, 每个单词出现的概率
    B: tag之间的转移概率
    """
    x = [word2id[word] for word in x.split(" ")]  # x: [4521, 412, 542 ..]
    T = len(x)
    
    dp = np.zeros((T,N))  # dp[i][j]: w1...wi, 假设wi的tag是第j个tag
    ptr = np.array([[0 for x in range(N)] for y in range(T)] ) # T*N
    # TODO: ptr = np.zeros((T,N), dtype=int)
    
    for j in range(N): # basecase for DP算法
        dp[0][j] = log(pi[j]) + log(A[j][x[0]])
    
    for i in range(1,T): # 每个单词
        for j in range(N):  # 每个词性
            # TODO: 以下几行代码可以写成一行(vectorize的操作, 会使得效率变高)
            dp[i][j] = -9999999
            for k in range(N): # 从每一个k可以到达j
                score = dp[i-1][k] + log(B[k][j]) + log(A[j][x[i]])
                if score > dp[i][j]:
                    dp[i][j] = score
                    ptr[i][j] = k
    
    # decoding: 把最好的tag sequence 打印出来
    best_seq = [0]*T  # best_seq = [1,5,2,23,4,...]  
    # step1: 找出对应于最后一个单词的词性
    best_seq[T-1] = np.argmax(dp[T-1])
    
    # step2: 通过从后到前的循环来依次求出每个单词的词性
    for i in range(T-2, -1, -1): # T-2, T-1,... 1, 0
        best_seq[i] = ptr[i+1][best_seq[i+1]]
        
    # 到目前为止, best_seq存放了对应于x的 词性序列
    for i in range(len(best_seq)):
        print (id2tag[best_seq[i]])
    
x = "Social Security number , passport number and details about the services provided for the payment"
viterbi(x, pi, A, B)

Social/NNP
Security/NNP
number/NN
,/,
passport/NN
number/NN
and/CC
details/NNS
about/IN
the/DT
services/NNS
provided/VBN
for/IN
the/DT
payment/NN
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟知之

如果能帮助到你们,可否点个赞?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值