Python结合OpenCV视频处理、逐帧修改图片

前言

2015年7月毕业至今,已有三年半时间了。这么长的时间里,非常感激CSDN、博客园、简书等众多平台及众多作者提供了无数的帮助。这篇文章是我的第一篇文章,一方面希望能总结、沉淀一些知识,另一方面,也希望从今天开始,能或多或少地帮助一些有需要的朋友。

背景

OpenCV中,读取视频用到的是:VideoCapture,写入视频用到的是:VideoWriter。
在一次视频闪屏测试中,客户给我们反馈闪屏出现卡顿、丢帧、甚至是倒计时未结束,视频就已经结束了的情况。测试的视频,就是一个普普通通的视频而已,从肉眼看,除了能人为感知有些卡顿之外,我们没有更多的信息能够知道到底哪个环节出现了问题。于是,我便想到了,在视频里面插入一些信息,就可以更详细地知道,视频闪屏哪个环节出现了问题。整理的一下,需要用到的信息有:FPS、总帧数、当前播放到第几帧、该帧是视频中的第几秒。

读取视频并获取相关信息

video = cv2.VideoCapture("test.mp4")
fps = video.get(cv2.CAP_PROP_FPS)
frameCount = video.get(cv2.CAP_PROP_FRAME_COUNT)
size = (int(video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)))

VideoCapture中传入的是视频路径,可以是绝对路径,也可以是相对路径,test.mp4 这个视频与python脚本放在同一目录,因此用相对路径即可。
获取到video对象之后,可以用过get方法,获取视频相关的信息:
cv2.CAP_PROP_FPS:视频帧率
cv2.CAP_PROP_FRAME_COUNT:视频总帧数
cv2.CAP_PROP_FRAME_WIDTH:视频宽度
cv2.CAP_PROP_FRAME_HEIGHT:视频高度
更多视频相关信息,可以参考如下:https://docs.opencv.org/3.2.0/d4/d15/group__videoio__flags__base.html#gaeb8dd9c89c10a5c63c139bf7c4f5704d

逐帧读取视频

success, frame = video.read() 

第一个返回值的是读取视频成功与否,第二个返回值是视频当前帧,读完后视频会迭代到下一帧,下载再调read方法的时候,就可以把下一帧读出。因此,用while循环,即可把视频逐帧读出:

success, frame = video.read() 
while success:
	success, frame = video.read()

重写视频

videoWriter = cv2.VideoWriter('trans.mp4', cv2.VideoWriter_fourcc(*'MP4V'), fps, size) 

第一个参数:视频输出地址
第二个参数:视频编码格式
第三个参数:视频帧率
第四个参数:视频大小信息
videoWriter.write(frame),传入视频帧,就可以写视频了
其中,对写入的frame,需要加入我们的一些调试信息。前面用read函数读进来的frame是Mat类型,因此,可以直接在上面编辑即可。

cv2.putText(frame, 'fps: 24', (0,200), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 5)

第一个参数:Mat类,即要修改的图片
第二个参数:字符串,要写在图片中的信息
第三个参数:坐标,(0,0)为图片左上角
第四个参数:字体,具体可以参考下表格
第五个参数:字体大小倍数,与基本字体大小对比
第六个参数:字体颜色
第七个参数:字体笔画厚度
更多字体信息可以参考:
https://docs.opencv.org/trunk/d6/d6e/group__imgproc__draw.html#gga0f9314ea6e35f99bb23f29567fc16e11afff8b973668df2e4028dddc5274310c9

完整代码

# -*- coding: UTF-8 -*-
import cv2

video = cv2.VideoCapture("test.mp4")
fps = video.get(cv2.CAP_PROP_FPS)
frameCount = video.get(cv2.CAP_PROP_FRAME_COUNT)
size = (int(video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)))

videoWriter = cv2.VideoWriter('trans.mp4', cv2.VideoWriter_fourcc(*'MP4V'), fps, size)  
success, frame = video.read()  
index = 1
while success :  
	cv2.putText(frame, 'fps: ' + str(fps), (0, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,0,255), 5)
	cv2.putText(frame, 'count: ' + str(frameCount), (0, 300), cv2.FONT_HERSHEY_SIMPLEX,2, (255,0,255), 5)
	cv2.putText(frame, 'frame: ' + str(index), (0, 400), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,0,255), 5)
	cv2.putText(frame, 'time: ' + str(round(index / 24.0, 2)) + "s", (0,500), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,0,255), 5)
	cv2.imshow("new video", frame)
	cv2.waitKey(1000 / int(fps))
	videoWriter.write(frame)
	success, frame = video.read()
	index += 1

video.release()


效果

在这里插入图片描述

  • 26
    点赞
  • 148
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
结合DeepLabCut和OpenCV进行实时视频训练可以实现实时姿态估计的应用。下面是一个基本的示例代码,展示了如何结合DeepLabCut和OpenCV来实现实时视频训练: ```python import cv2 import numpy as np import deeplabcut # 加载DeepLabCut模型 config_path = 'path_to_config.yaml' dlc_model_path = 'path_to_dlc_model.h5' deeplabcut.load_model(config_path) # 打开摄像头 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() # 进行姿态估计 predictions = deeplabcut.predict_frames(dlc_model_path, [frame]) # 提取关键点坐标 keypoints = predictions[0]['pose_coords'] # 在图像上绘制关键点 for keypoint in keypoints: x, y = keypoint cv2.circle(frame, (int(x), int(y)), 5, (0, 255, 0), -1) # 显示 cv2.imshow('Frame', frame) # 按下 'q' 键退出循环 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头和关闭窗口 cap.release() cv2.destroyAllWindows() ``` 上述代码假设您已经通过DeepLabCut进行了姿态估计模型的训练,并得到了配置文件(config.yaml)和训练好的模型(dlc_model.h5)。您需要将路径替换为您自己的文件路径。 代码中使用OpenCV库打开摄像头,然后读取每一图像。接着,使用DeepLabCut的predict_frames函数对每一进行姿态估计,并获取关键点坐标。最后,使用OpenCV在图像上绘制关键点,并实时显示图像。 您可以根据您的具体需求对此代码进行修改和定制,例如调整摄像头参数、调整姿态估计结果的可视化方式等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值