pytorch Dropout

36 篇文章 1 订阅
13 篇文章 0 订阅

减低过拟合,一般可以通过:加大训练集、loss function 加入正则化项、Dropout 等途径。本文的主要作用是展示dropout 的作用

设置Dropout时,torch.nn.Dropout(0.5), 这里的 0.5 是指该层(layer)的神经元在每次迭代训练时会随机有 50% 的可能性被丢弃(失活),不参与训练,一般多神经元的 layer 设置随机失活的可能性比神经元少的高。

问题:droupout如何丢弃神经元的?

 

参考:https://www.jianshu.com/p/636be9f8f046

https://blog.csdn.net/u014532743/article/details/78453990

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值