复制
t12= torch.tensor([[5.,-9.],])#大小(3,4)
print('t12={}'.format(t12))
t34= t12.repeat(3,2)#三行,每一行复制2次
print('t34={}'.format(t34))
运行结果:
t12=tensor([[ 5., -9.]])
t34=tensor([[ 5., -9., 5., -9.],
[ 5., -9., 5., -9.],
[ 5., -9., 5., -9.]])
拼接1:
tp=torch.arange(12).reshape(3,4)
print(tp)
tn=-tp
tc0=torch.cat([tp,tn],1)#行数不增加,列数增加
print(tc0)
tc0=torch.cat([tp,tn],0)#列数不增加,行数增加
print(tc0)

拼接2:
tp=torch.arange(12).reshape(3,4)
print(tp)
tn=-tp
tc0=torch.stack([tp,tn],1)#行数增加,列数不增加,且交叉
print(tc0)
tc0=torch.stack([tp,tn],0)#列数不增加,行数增加
print(tc0)
运行结果:


本文详细介绍了PyTorch中张量的基本操作,包括如何使用tensor创建张量,通过repeat方法复制张量,以及利用cat和stack方法进行张量的拼接。这些操作对于理解和运用PyTorch进行深度学习模型的构建至关重要。
7557

被折叠的 条评论
为什么被折叠?



