张量的扩展和拼接

本文详细介绍了PyTorch中张量的基本操作,包括如何使用tensor创建张量,通过repeat方法复制张量,以及利用cat和stack方法进行张量的拼接。这些操作对于理解和运用PyTorch进行深度学习模型的构建至关重要。

 复制

t12= torch.tensor([[5.,-9.],])#大小(3,4)
print('t12={}'.format(t12))
t34= t12.repeat(3,2)#三行,每一行复制2次
print('t34={}'.format(t34))

运行结果:

t12=tensor([[ 5., -9.]])
t34=tensor([[ 5., -9.,  5., -9.],
        [ 5., -9.,  5., -9.],
        [ 5., -9.,  5., -9.]])

拼接1:

tp=torch.arange(12).reshape(3,4)
print(tp)
tn=-tp
tc0=torch.cat([tp,tn],1)#行数不增加,列数增加
print(tc0)
tc0=torch.cat([tp,tn],0)#列数不增加,行数增加
print(tc0)

拼接2:

 

tp=torch.arange(12).reshape(3,4)
print(tp)
tn=-tp
tc0=torch.stack([tp,tn],1)#行数增加,列数不增加,且交叉
print(tc0)
tc0=torch.stack([tp,tn],0)#列数不增加,行数增加
print(tc0)

 运行结果:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值