代码1:
t=torch.arange(12)
print(t)
print(t[3],t[0])
print(t[-5])
print(t[3:6])#个数为3
print(t[:6])
print(t[-5:])
print(t[3:6:2])#2表示只有2个元素
print(t[3::2])#以2位方差
运行结果:

代码2 :
t= torch.arange(24).reshape(2,3,4)#大小(2,3,4)
print(t)
print(t[1:,-2])
print(t[1:,-2,2])
print(t[0,:])
运行结果:
代码3:
t= torch.arange(24).reshape(2,3,4)#大小(2,3,4)
print(t)
index=torch.tensor([2,2])#表示对那个维度进行处理
print(t.index_select(1,index))
运行结果


本文深入探讨了PyTorch中张量的切片与索引操作,包括一维张量的基本切片、多维张量的高级索引及选择特定维度元素的方法。通过具体代码示例,展示了如何利用索引选取特定元素,以及如何通过切片获取子张量,为读者提供了理解和运用PyTorch张量操作的实践指南。
6696

被折叠的 条评论
为什么被折叠?



