选取部分张量元素

本文深入探讨了PyTorch中张量的切片与索引操作,包括一维张量的基本切片、多维张量的高级索引及选择特定维度元素的方法。通过具体代码示例,展示了如何利用索引选取特定元素,以及如何通过切片获取子张量,为读者提供了理解和运用PyTorch张量操作的实践指南。

代码1:

t=torch.arange(12)
print(t)
print(t[3],t[0])
print(t[-5])
print(t[3:6])#个数为3
print(t[:6])
print(t[-5:])
print(t[3:6:2])#2表示只有2个元素
print(t[3::2])#以2位方差

 运行结果:

代码2 :

 

t= torch.arange(24).reshape(2,3,4)#大小(2,3,4)
print(t)
print(t[1:,-2])
print(t[1:,-2,2])
print(t[0,:])

运行结果:

 

 

代码3:


t= torch.arange(24).reshape(2,3,4)#大小(2,3,4)
print(t)
index=torch.tensor([2,2])#表示对那个维度进行处理
print(t.index_select(1,index))

运行结果 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值