pythonflow_MLflow系列1:MLflow入门教程(Python)

这篇教程介绍了如何使用MLflow进行机器学习项目管理,包括训练线性回归模型、记录超参数和性能指标、打包模型以及部署为REST服务。示例使用了UCI红酒质量数据集,训练了一个ElasticNet模型,并展示了如何通过MLflow的UI对比不同模型性能。
摘要由CSDN通过智能技术生成

这篇教程展示了如何:

训练一个线性回归模型

将训练代码打包成一个可复用可复现的模型格式

将模型部署成一个简单的HTTP服务用于进行预测

这篇教程使用的数据来自UCI的红酒质量数据集,主要用于根据红酒的PH值,酸度,残糖量等指标来评估红酒的质量。

我们会用到什么?

安装MLflow和scikit-learn,推荐两种安装方式:

安装MLflow及其依赖:pip install mlflow[extras]

分别安装MLflow(pip install mlflow)和scikit-learn(pip install scikit-learn)

训练模型

我们要训练的线性回归模型包含两个超参数:alpha和l1_ratio。

我们使用下边的train.py代码进行训练

# The data set used in this example is from http://archive.ics.uci.edu/ml/datasets/Wine+Quality

# P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.

# Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

import os

import warnings

import sys

import pandas as pd

import numpy as np

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

from sklearn.model_selection import train_test_split

from sklearn.linear_model import ElasticNet

import mlflow

import mlflow.sklearn

import logging

logging.basicConfig(level=logging.WARN)

logger = logging.getLogger(__name__)

def eval_metrics(actual, pred):

rmse = np.sqrt(mean_squared_error(actual, pred))

mae = mean_absolute_error(actual, pred)

r2 = r2_score(actual, pred)

return rmse, mae, r2

if __name__ == "__main__":

warnings.filterwarnings("ignore")

np.random.seed(40)

# Read the wine-quality csv file from the URL

csv_url =\

'http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv'

try:

data = pd.read_csv(csv_url, sep=';')

except Exception as e:

logger.exception(

"Unable to download training & test CSV, check your internet connection. Error: %s", e)

# Split the data into training and test sets. (0.75, 0.25) split.

train, test = train_test_split(data)

# The predicted column is "quality" which is a scalar from [3, 9]

train_x = train.drop(["quality"], axis=1)

test_x = test.drop(["quality"], axis=1)

train_y = train[["quality"]]

test_y = test[["quality"]]

alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5

l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5

with mlflow.start_run():

lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)

lr.fit(train_x, train_y)

predicted_qualities = lr.predict(test_x)

(rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)

print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio))

print(" RMSE: %s" % rmse)

print(" MAE: %s" % mae)

print(" R2: %s" % r2)

mlflow.log_param("alpha", alpha)

mlflow.log_param("l1_ratio", l1_ratio)

mlflow.log_metric("rmse", rmse)

mlflow.log_metric("r2", r2)

mlflow.log_metric("mae", mae)

mlflow.sklearn.log_model(lr, "model")

这个例子用pandas,numpy,sklearn的API构建了一个简单的机器学习模型。通过MLflow tracking APIs来记录每次训练的信息,比如模型超参数和模型的评价指标。这个例子还将模型进行了序列化以便后续部署。

我们用不同的超参数训练几次模型

python train.py 0.5 0.5

python train.py 0.4 0.4

python train.py 0.6 0.6

每次运行完训练脚本,MLflow都会将信息保存在目录mlruns中。

对比模型

在mlruns目录的上级目录中运行下边的命令:

mlflow ui

ee3a013057563a5934df37c3ea74db7b.png

我们可以通过搜索功能快速筛选感兴趣的模型,比如搜索条件设置为metrics.rmse<0.8可以将rmse小于0.8的模型找出来,如果更复杂的搜索条件,可以下载CSV文件并用其他软件进行分析。

打包模型

我们已经写好了训练代码,可以将其打包提供给其他的数据科学家来复用,或者可以进行远程训练。

我们根据MLflow Projects的惯例来指定代码的依赖和代码的入口。比如创建一个sklearn_elasticnet_wine目录,在这个目录下创建一个MLproject文件来指定项目的conda依赖和包含两个参数alpha/l1_ratio的入口文件。

# sklearn_elasticnet_wine/MLproject

name: tutorial

conda_env: conda.yaml

entry_points:

main:

parameters:

alpha: float

l1_ratio: {type: float, default: 0.1}

command: "python train.py {alpha} {l1_ratio}"

conda.yaml文件列举了所有依赖:

# sklearn_elasticnet_wine/conda.yaml

name: tutorial

channels:

- defaults

dependencies:

- numpy=1.14.3

- pandas=0.22.0

- scikit-learn=0.19.1

- pip:

- mlflow

通过执行mlflow run examples/sklearn_elasticnet_wine -P alpha=0.42可以运行这个项目,MLflow会根据conda.yaml的配置在指定的conda环境中训练模型。

如果代码仓库的根目录有MLproject文件,也可以直接通过Github来运行,比如代码仓库:https://github.com/mlflow/mlflow-example。我们可以执行这个命令mlflow run git@github.com:mlflow/mlflow-example.git -P alpha=0.42来训练模型。

部署模型

我们通过MLflow Models来部署模型。一个MLflow Model是一种打包机器学习模型的标准格式,可以被用于多种下游工具,比如实时推理的REST API或者批量推理的Apache Spark。

在训练代码中,这行代码用于保存模型(原文称为artifact,暂且翻译成模型产品吧):

mlflow.sklearn.log_model(lr, "model")

我们可以在UI中通过点击Date链接来查看每次训练的模型产品,例如:

57f33aec705160173137817aae5c2cfe.png

在底部,我们可以看到通过调用mlflow.sklearn.log_model产生了两个文件,位于类似目录/Users/mlflow/mlflow-prototype/mlruns/0/7c1a0d5c42844dcdb8f5191146925174/artifacts/model。MLmodel元数据文件是告诉MLflow如何加载模型。model.pkl文件是训练好的序列化的线性回归模型。

运行下边的命令,可以将模型部署成本地REST服务(要确保训练模型和部署模型所用的python版本一致,否则会报错):

# 需要替换成你自己的目录

mlflow models serve -m /Users/mlflow/mlflow-prototype/mlruns/0/7c1a0d5c42844dcdb8f5191146925174/artifacts/model -p 1234

部署好服务之后,可以通过curl命令发送json序列化的pandas DataFrame来测试下。模型服务器接受的数据格式可以参考MLflow deployment tools documentation.

curl -X POST -H "Content-Type:application/json; format=pandas-split" \

--data '{"columns":["alcohol", "chlorides", "citric acid", "density", "fixed acidity", "free sulfur dioxide", "pH", "residual sugar", "sulphates", "total sulfur dioxide", "volatile acidity"],"data":[[12.8, 0.029, 0.48, 0.98, 6.2, 29, 3.33, 1.2, 0.39, 75, 0.66]]}' \

http://127.0.0.1:1234/invocations

服务器会返回类似输出:

[6.379428821398614]

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值