【论文阅读-GSAPool】Structure-Feature based Graph Self-adaptive Pooling

论文地址:https://arxiv.org/pdf/2002.00848.pdf
代码地址:https://github.com/psp3dcg/GSAPool

近年来,提出了各种处理Graph的方法。但是,这些方法大多侧重于节点特征的聚合,而很少关注图池化。而现有的基于top-k的图池化方法也存在一些问题。首先,为了构建池图拓扑,目前的top-k选择方法仅从单个角度评估节点的重要性,过于简单和客观。其次,在池化过程中,未选择节点的特征信息直接丢失,不可避免地导致大量图特征信息丢失。
这篇论文提出的一种新的图自适应池化方法主要解决以下问题:
(1)为了构建合理的池化图拓扑,同时考虑了图的结构和特征信息,在节点选择上提供了更高的准确性和客观性;
(2)为了使合并的节点包含足够有效的图信息,在丢弃不重要节点之前对节点特征信息进行聚合;因此,被选中的节点包含来自邻居节点的信息,可以增强未被选中节点特征的使用。

模型架构

GSAPool模型架构
延续了SAGPool的分层池化模型架构,便于进行实验对比。

代码逻辑

在这里插入图片描述

卷积层

ChebConv直接使用拉普拉斯矩阵作为卷积算子。在不进行特征向量分解的情况下,减少了参数的数量,加快了计算速度。
GCNConv将卷积扩展到图结构数据中,可以获得更好的图表示,在半监督任务中表现良好。GraphSAGE通过聚集邻域内的节点特征信息来生成节点嵌入。
GAT采用注意机制,在聚集过程中计算相邻节点的注意分数作为特征信息的权重值。

实验中使用GCNConv

图池化层

GASPool卷积层结构图

SBTL(The structure-based topology learning)

通常,图中包含大量的节点和边,这些节点和边表示丰富的结构信息。因此,根据节点的结构信息来评估节点的重要性是有效的。考虑到GCNConv考虑了结构信息,该方法适合于评估节点的重要性。GCNConv的表达式如下:

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值