《FEDBN: FEDERATED LEARNING ON NON-IID FEATURES VIA LOCAL BATCH NORMALIZATION》ICLR 2021。文章通过在局部模型中加入批量归一化层(BN)解决联邦学习数据异构性中feature shift这种情况(之前很多文章都是研究label shift或client shift),文章将这种方法名为FedBN。
什么是feature shift
y为标签,x为特征,文章将feature shift定义为以下情况:
1)covariate shift:即使所有客户的 P i P_i Pi