Batch Normalization在联邦学习中的应用

回想一下联邦学习(FL)中的FedAvg,这个算法是将每个参与方的模型的所有参数进行加权平均聚合,包括Batch Normalization(BN)的参数。
再回顾一下BN。式中µ和 σ 2 σ^2 σ2为BN统计量,是通过每个channel的空间和批

### 联邦学习中的大型模型实现与应用场景 在联邦学习环境中部署大型模型面临诸多挑战,这些挑战不仅涉及技术层面还包括实际操作中的复杂性。尽管存在公共数据集,在某些情况下,出于隐私保护、法规遵从以及商业敏感性的考虑,并不是所有的参与方都能直接共享原始数据[^1]。 #### 技术架构支持大规模参数更新同步 为了使大型模型能够在联邦框架下有效运作,通常会采用特定的技术手段来优化参数更新过程。例如,通过引入压缩算法减少通信开销;利用差分隐私机制增强安全防护措施;或者借助于更高效的聚合策略提高收敛速度并降低延迟等问题的发生概率[^3]。 #### 应用场景实例分析 - **医疗健康领域**:不同医疗机构之间可以共同训练疾病预测或诊断辅助工具而不必暴露患者的具体病历资料给其他机构; - **金融服务行业**:银行间合作提升欺诈检测系统的准确性同时确保客户交易记录的安全保密; - **物联网设备管理平台**:智能家居产品制造商能够基于用户行为习惯改进服务质量而无需收集完整的个人使用日志。 ```python import tensorflow_federated as tff from tensorflow.keras import layers, models def create_large_model(): """创建一个较大的神经网络结构""" model = models.Sequential([ layers.Dense(512, activation='relu', input_shape=(784,)), layers.Dropout(0.2), layers.Dense(256, activation='relu'), layers.BatchNormalization(), layers.Dense(128, activation='relu'), layers.Dense(num_classes, activation='softmax') ]) return model federated_learning_process = tff.learning.build_federated_averaging_process( model_fn=create_large_model, client_optimizer_fn=lambda: tf.optimizers.SGD(learning_rate=0.02)) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

联邦学习小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值