字符串相似度算法 java_java 两字符串相似度计算算法 (转)Levenshtein Distance编辑距离算法...

Levenshtein distance最先是由俄国科学家Vladimir Levenshtein在1965年发明,用他的名字命名。不会拼读,可以叫它edit distance(编辑距离)。

原理很简单,就是返回将第一个字符串转换(删除、插入、替换)成第二个字符串的编辑次数。次数越少,意味着字符串相似度越高

Levenshtein distance可以用来:

Spell checking(拼写检查)

Speech recognition(语句识别)

DNA analysis(DNA分析)

Plagiarism detection(抄袭检测)

LD用m*n的矩阵存储距离值。算法大概过程:

java 代码实现:

/**

* 编辑距离的两字符串相似度

*

* @author jianpo.mo

*/

public class SimilarityUtil {

private static int min(int one, int two, int three) {

int min = one;

if(two < min) {

min = two;

}

if(three < min) {

min = three;

}

return min;

}

public static int ld(String str1, String str2) {

int d[][];    //矩阵

int n = str1.length();

int m = str2.length();

int i;    //遍历str1的

int j;    //遍历str2的

char ch1;    //str1的

char ch2;    //str2的

int temp;    //记录相同字符,在某个矩阵位置值的增量,不是0就是1

if(n == 0) {

return m;

}

if(m == 0) {

return n;

}

d = new int[n+1][m+1];

for(i=0; i<=n; i++) {    //初始化第一列

d[i][0] = i;

}

for(j=0; j<=m; j++) {    //初始化第一行

d[0][j] = j;

}

for(i=1; i<=n; i++) {    //遍历str1

ch1 = str1.charAt(i-1);

//去匹配str2

for(j=1; j<=m; j++) {

ch2 = str2.charAt(j-1);

if(ch1 == ch2) {

temp = 0;

} else {

temp = 1;

}

//左边+1,上边+1, 左上角+temp取最小

d[i][j] = min(d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1]+temp);

}

}

return d[n][m];

}

public static double sim(String str1, String str2) {

int ld = ld(str1, str2);

return 1 - (double) ld / Math.max(str1.length(), str2.length());

}

public static void main(String[] args) {

String str1 = "chenlb.blogjava.net";

String str2 = "chenlb.javaeye.com";

System.out.println("ld="+ld(str1, str2));

System.out.println("sim="+sim(str1, str2));

}

}

Levenshtein Distance算法是一种常见的字符串相似度算法,也被称为编辑距离算法。其主要思想是通过计算字符串之间的编辑距离来确定它们的相似程度。 编辑距离指的是将一个字符串换成另一个字符串所需的最少操作次数,其中每次操作可以是插入、删除或替换一个字符。例如,将字符串“kitten”换成字符串“sitting”需要进行3次操作,即将“k”替换为“s”,将“e”替换为“i”,将“n”替换为“g”。 Levenshtein Distance算法的实现一般使用动态规划的方法,通过填充一个二维矩阵来计算字符串之间的编辑距离。具体实现过程可以参考以下伪代码: ``` function LevenshteinDistance(s1, s2): m = length(s1) n = length(s2) d = new matrix(m+1, n+1) for i from 0 to m: d[i, 0] = i for j from 0 to n: d[0, j] = j for j from 1 to n: for i from 1 to m: if s1[i] == s2[j]: cost = 0 else: cost = 1 d[i, j] = min(d[i-1, j]+1, d[i, j-1]+1, d[i-1, j-1]+cost) return d[m, n] ``` 在以上代码中,变量s1和s2分别表示个待比较字符串,m和n分别表示它们的长度,矩阵d用于存储编辑距离计算结果。首先,将矩阵d的第一行和第一列分别初始化为0到n和0到m的整数。然后,对于每个(i, j)位置,如果s1[i]等于s2[j],则将cost设为0,否则设为1。最后,根据递推公式d[i, j] = min(d[i-1, j]+1, d[i, j-1]+1, d[i-1, j-1]+cost)来填充矩阵d,并返回d[m, n]作为编辑距离的结果。 Levenshtein Distance算法的时间复杂度为O(m*n),其中m和n分别为字符串的长度。在实际应用中,该算法可用于拼写检查、数据去重等场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值