一元线性回归模型数据_第二章 一元线性回归模型续2

2.4 一元线性回归模型的统计检验

“所有科学命题都要有可证伪性,不可证伪的理论不能成为科学理论。”——卡尔·波普尔

计量经济学模型是通过分析样本数据来量化经济关系,因此我们必须考虑结论的可靠性。而假设检验决定了从样本中能够获得哪些关于现实世界的信息。得出的结论会不会是偶然得到的呢?使用从样本中得到的结论能否拒绝已有的理论?如果理论是正确的,则这一特定样本被观测到的概率有多大?

本章讨论的假设检验是针对回归模型的,也会简要回顾概率统计的基本知识。

在实践中人们想知道他们所关心的理论能否被实际观测样本中得到的估计结果所支持,但要证明已经给出的假设是否正确几乎是不可能的。唯一能说明的是,特定的样本符合特定的假设。即使假设检验不能证实一个给定的结论,却能在一定的显著性水平下拒绝它。在这种情况下,研究者认为在理论假设正确的时候,抽样结果很难被观测到。

2.4.1 假设检验

显著性检验是一种利用样本结果来证实一个虚拟假设真伪的检验程序。它的关键思想在于一个检验统计量及其它在虚拟假设下的抽样分布。它根据样本数据计算出的检验统计量值来判断是否接受H0。

虚拟假设(也称原假设,null hypothesis)通常表述为研究者不希望出现的结果,记为H0,它是不希望出现结果的数值范围。例如,我们不希望某个解释变量对被解释变量是没有影响的,即影响等于0,那么原假设可以表述为:

b9be0db32bb6fd05fbaaa15e0ed139c9.png      上述检验是双侧检验,其对立假设的取值位于原假设的两侧。还有一种是单侧检验,其对立假设的值只位于原假设的一侧。

在实践中,经济学家总是将其所期望的结果置于对立假设中,这样便可以有充分的理由来拒绝原假设。要注意的是,当没有充分理由来拒绝原假设的时候,不能说接受原假设,更严谨的说法是不能拒绝原假设。

“就像法庭宣布裁决时用无罪而不是无辜的表述一样,统计检验的结论为不能拒绝而不是接受。”——Jan Kmenta

假设检验的基本思想是先对总体参数提出一个假设,然后利用样本信息来判断这一假设是否成立。它通过数据来确认原假设的合理性,一般总是将期望结果的反面作为原假设,即原假设确定了一个与我们期望不符的参数值。其原理是概率性质的反证法,小概率事件原理,即小概率事件在1次试验中几乎是不可能发生。

2.4.2回归系数的显著性检验

b7289ed3fbe98667c657fd4eb7ee9143.png

0b96363d97f89124140c9a30d415365c.png

往期回顾:

第一章 绪论1

第一章 绪论2

第二章 一元线性回归模型1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值