证明电压电流相位差的余弦值和功率因数相等

文章详细证明了电压电流相位差的余弦值等于功率因数,首先建立了电压和电流的数学模型,然后通过瞬时功率、有功功率的计算,展示cosθ=P/S,从而得出cosθ=cosφ,即两者相等。同时,还介绍了无功功率的计算方法和它与视在功率、有功功率的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

证明:“电压电流相位差的余弦值”和“功率因数”相等

电压电流相位差的余弦值和功率因数相等,这在《电路分析》中给出过结论,但没有给出详细的证明过程。其次,在电气工程师考试中,也会经常遇到。

电压电流相位差:是指电压与电流之间的时间差,用θ表示。

功率因数表示一个负荷所需要的有功功率和视在功率的比值。

cosφ=P/S,

其中:

P为有功功率

Q为无功功率

S为视在功率:S = U*I

cosφ为功率因数,φ为功率因数角

下面证明:cosθ= cosφ

1、首先建立数学模型

电压函数:u(t)=Um * sin(ωt+α),用极坐标表示(Um,∠α)

电流函数:i(t)=Im * sint(ωt+β),用极坐标表示(Im,∠β)

θ = ∠α- ∠β

电压有效值为U

电流有效置为I

为了便于计算,我们可以将极坐标系顺时针旋转α,得到下图:

 

电压函数:u(t)=Um * sin(ωt),用极坐标表示(Um,∠0)

电流函数:i(t)=Im * sin(ωt-θ),用极坐标表示(Im,∠-θ)

2、瞬时功率

p(t)=u(t)*i(t)

p(t)=Um * sin(ωt)* Im * sin(ωt-θ)

= Um * Im *[cosθ-cos(2ωt-θ)]/2

= U * I * cosθ- U * I * cos(2ωt-θ)

展开后,瞬时功率为:

p(t)= U * I [cosθ- cosθ* cos(2ωt) - sinθ* sin(2ωt)]

3、有功功率(平均功率)计算

    由于瞬时功率随时间不断变化,工程上应用很不方便,由此引入平均功率。平均功率是指瞬时功率在一个周期内的平均值,又称为有功功率,并用P表示。

令T=2Π/2ω

 

平均功率:P=(1/T)p(t)

P=(1/T)p(t)=( U*I/T)∫[cosθ-cosθ* cos(2ωt)- sinθ* sin(2ωt)]d(t)

=( U*I/T)cosθd(t)-(cosθ*/2ω)cos(2ωt) d(2ωt)-(sinθ/2ω)sin(2ωt)]d(2ωt)

=U*I*cosθ

因为S = U*I,所以P=S*cosθ,cosθ=P/S

又因为功率因素cosφ=P/S所以cosφ = cosθ

有功功率是一个不随时间变化的恒定值,而瞬时功率随时间在不断变化

4、无功功率

    由于有功功率同X轴平行,无功功率同Y轴平行,因此,有功功率与无功功率的矢量角度为90,则:

Q * Q  =  S * S  -  P * P

在电工技术中,定义视在功率为:S = U * I

前面计算到有功功率:P = U * I * cosθ

Q * Q  =  (U*I) * (U*I)  -  (U * I * cosθ)*( U * I * cosθ)

      =  (U*I)* (U*I) * [ 1 - cosθ* cosθ]

      =  (U*I*sinθ) * (U*I*sinθ)

因此,无功功率为Q = U * I * sinθ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值