本文内容主要是不可压的雷诺平均方程(Reynolds-averaged Navier-Stokes equations,RANS)的推导。在推导雷诺方程之前先来总结一些关于时间平均的运算规律。
1. 关于时间平均的运算规律证明
对于瞬时量
ϕ
=
Φ
+
ϕ
′
\phi=\Phi+\phi^\prime
ϕ=Φ+ϕ′和
ψ
=
Ψ
+
ψ
′
\psi=\Psi+\psi^\prime
ψ=Ψ+ψ′,
Φ
\Phi
Φ和
Ψ
\Psi
Ψ已经是与时间无关的量,所以根据时间平均的定义有
ϕ
′
‾
=
ψ
′
‾
=
0
(1.1)
\overline{\phi^\prime}=\overline{\psi^\prime}=0 \tag{1.1}
ϕ′=ψ′=0(1.1)
Φ
‾
=
1
Δ
t
∫
0
Δ
t
Φ
d
t
=
Φ
1
Δ
t
∫
0
Δ
t
d
t
=
Φ
(1.2)
\overline{\Phi}=\frac{1}{\Delta t} \int_0^{\Delta t} \Phi dt =\Phi \frac{1}{\Delta t} \int_0^{\Delta t} dt=\Phi \tag{1.2}
Φ=Δt1∫0ΔtΦdt=ΦΔt1∫0Δtdt=Φ(1.2)
∂
ϕ
∂
s
‾
=
1
Δ
t
∫
0
Δ
t
∂
ϕ
∂
s
d
t
=
∂
∂
s
(
1
Δ
t
∫
0
Δ
t
ϕ
d
t
)
=
∂
ϕ
ˉ
∂
s
=
∂
Φ
∂
s
(1.3)
\begin{aligned} \overline{\frac{\partial \phi}{\partial s}} &= \frac{1}{\Delta t} \int_0^{\Delta t} \frac{\partial \phi}{\partial s} dt = \frac{\partial}{\partial s} \left(\frac{1}{\Delta t} \int_0^{\Delta t} \phi dt \right) = \frac{\partial \bar{\phi}}{\partial s} = \frac{\partial \Phi}{\partial s} \end{aligned} \tag{1.3}
∂s∂ϕ=Δt1∫0Δt∂s∂ϕdt=∂s∂(Δt1∫0Δtϕdt)=∂s∂ϕˉ=∂s∂Φ(1.3)
∫
ϕ
d
s
‾
=
1
Δ
t
∫
0
Δ
t
(
∫
ϕ
d
s
)
d
t
=
∫
(
1
Δ
t
∫
0
Δ
t
ϕ
d
t
)
d
s
=
∫
ϕ
ˉ
d
s
=
∫
Φ
d
s
(1.4)
\begin{aligned} \overline{\int \phi ds} &= \frac{1}{\Delta t}\int_0^{\Delta t}\left( \int \phi ds \right)dt =\int \left( \frac{1}{\Delta t}\int_0^{\Delta t} \phi dt\right)ds =\int \bar{\phi}ds = \int\Phi ds \end{aligned} \tag{1.4}
∫ϕds=Δt1∫0Δt(∫ϕds)dt=∫(Δt1∫0Δtϕdt)ds=∫ϕˉds=∫Φds(1.4)
ϕ
+
ψ
‾
=
1
Δ
t
∫
0
Δ
t
(
ϕ
+
ψ
)
d
t
=
1
Δ
t
∫
0
Δ
t
ϕ
d
t
+
1
Δ
t
∫
0
Δ
t
ψ
d
t
=
Φ
+
Ψ
(1.5)
\begin{aligned} \overline{\phi + \psi} &= \frac{1}{\Delta t} \int_0^{\Delta t} (\phi + \psi)dt = \frac{1}{\Delta t} \int_0^{\Delta t} \phi dt + \frac{1}{\Delta t} \int_0^{\Delta t} \psi dt = \Phi + \Psi \end{aligned} \tag{1.5}
ϕ+ψ=Δt1∫0Δt(ϕ+ψ)dt=Δt1∫0Δtϕdt+Δt1∫0Δtψdt=Φ+Ψ(1.5)
ϕ
Ψ
‾
=
1
Δ
t
∫
0
Δ
t
(
ϕ
Ψ
)
d
t
=
Ψ
1
Δ
t
∫
0
Δ
t
ϕ
d
t
=
Φ
Ψ
(1.6)
\overline{\phi\Psi} = \frac{1}{\Delta t } \int_0^{\Delta t} (\phi \Psi) dt = \Psi \frac{1}{\Delta t} \int_0^{\Delta t} \phi dt = \Phi\Psi \tag{1.6}
ϕΨ=Δt1∫0Δt(ϕΨ)dt=ΨΔt1∫0Δtϕdt=ΦΨ(1.6)
ϕ
′
Ψ
‾
=
1
Δ
t
∫
0
Δ
t
(
ϕ
′
Ψ
)
d
t
=
Ψ
1
Δ
t
∫
0
Δ
t
ϕ
′
d
t
=
Ψ
ϕ
′
ˉ
=
0
(1.7)
\overline{\phi^\prime\Psi} = \frac{1}{\Delta t} \int_0^{\Delta t} (\phi^\prime \Psi) dt = \Psi \frac{1}{\Delta t} \int_0^{\Delta t} \phi^\prime dt = \Psi \bar{\phi^\prime} = 0 \tag{1.7}
ϕ′Ψ=Δt1∫0Δt(ϕ′Ψ)dt=ΨΔt1∫0Δtϕ′dt=Ψϕ′ˉ=0(1.7)
ϕ
ψ
‾
=
(
Φ
+
ϕ
′
)
(
Ψ
+
ψ
′
)
‾
=
Φ
Ψ
+
Φ
ψ
′
+
ϕ
′
Ψ
+
ϕ
′
ψ
′
‾
=
Φ
Ψ
‾
+
Φ
ψ
′
‾
+
ϕ
′
Ψ
‾
+
ϕ
′
ψ
′
‾
=
Φ
Ψ
‾
+
0
+
0
+
ϕ
′
ψ
′
‾
=
Φ
Ψ
+
ϕ
′
ψ
′
‾
(1.8)
\begin{aligned} \overline{\phi \psi} = \overline{(\Phi + \phi^\prime)(\Psi + \psi^\prime)} &= \overline{\Phi\Psi + \Phi\psi^\prime + \phi^\prime \Psi + \phi^\prime \psi^\prime} \\ &= \overline{\Phi\Psi} + \overline{\Phi\psi^\prime} + \overline{ \phi^\prime \Psi} + \overline{\phi^\prime \psi^\prime} \\ &= \overline{\Phi\Psi} + 0 + 0 + \overline{\phi^\prime \psi^\prime} \\ & = \Phi\Psi + \overline{\phi^\prime \psi^\prime} \end{aligned} \tag{1.8}
ϕψ=(Φ+ϕ′)(Ψ+ψ′)=ΦΨ+Φψ′+ϕ′Ψ+ϕ′ψ′=ΦΨ+Φψ′+ϕ′Ψ+ϕ′ψ′=ΦΨ+0+0+ϕ′ψ′=ΦΨ+ϕ′ψ′(1.8)
以上均为标量的运算,矢量的散度和梯度计算可以通过上述公式扩展而来。
本文中均以粗体字母代表矢量,如速度矢量
u
\bold u
u和其他任意矢量
a
\bold a
a等,以
∇
⋅
u
\nabla \cdot \bold u
∇⋅u表示矢量
u
\bold u
u的散度,以
∇
ϕ
\nabla \phi
∇ϕ表示标量
ϕ
\phi
ϕ的梯度。根据雷诺分解,瞬时速度矢量
u
=
U
+
u
′
\bold u = \bold U + \bold u^\prime
u=U+u′和瞬时标量
ϕ
=
Φ
+
ϕ
′
\phi = \Phi + \phi^\prime
ϕ=Φ+ϕ′有如下运算规律:
u
=
(
u
,
v
,
w
)
T
\bold u = (u,v,w)^T
u=(u,v,w)T
u ˉ = U = ( u ˉ , v ˉ , w ˉ , ) = ( U , V , W ) T \bar \bold u = \bold U =(\bar u,\bar v,\bar w,)= (U,V,W)^T uˉ=U=(uˉ,vˉ,wˉ,)=(U,V,W)T
u
′
=
(
u
′
,
v
′
,
w
′
)
T
\bold u^\prime = (u^\prime,v^\prime,w^\prime)^T
u′=(u′,v′,w′)T
∇
⋅
u
‾
=
∂
u
∂
x
+
∂
v
∂
y
+
∂
w
∂
z
‾
=
∂
u
ˉ
∂
x
+
∂
v
ˉ
∂
y
+
∂
w
ˉ
∂
z
=
∂
U
∂
x
+
∂
V
∂
y
+
∂
W
∂
z
=
∇
⋅
U
=
∇
⋅
u
ˉ
(1.9)
\begin{aligned} \overline{\nabla \cdot \bold u} &= \overline{\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} } = \frac{\partial \bar u}{\partial x} + \frac{\partial \bar v}{\partial y} + \frac{\partial \bar w}{\partial z}\\ &= \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} =\nabla \cdot \bold U = \nabla \cdot \bar \bold u \end{aligned} \tag{1.9}
∇⋅u=∂x∂u+∂y∂v+∂z∂w=∂x∂uˉ+∂y∂vˉ+∂z∂wˉ=∂x∂U+∂y∂V+∂z∂W=∇⋅U=∇⋅uˉ(1.9)
ϕ
u
‾
=
(
ϕ
u
‾
,
ϕ
v
‾
,
ϕ
w
‾
)
T
=
[
Φ
U
+
ϕ
′
u
′
‾
Φ
V
+
ϕ
′
v
′
‾
Φ
W
+
ϕ
′
w
′
‾
]
=
Φ
U
+
ϕ
′
u
′
‾
(1.10)
\overline{\phi \bold u} = (\overline{\phi u},\overline{\phi v}, \overline{\phi w})^T= \left[ \begin{matrix} \Phi U + \overline{\phi^\prime u^\prime } \\ \\ \Phi V +\overline{\phi^\prime v^\prime } \\ \\ \Phi W +\overline{\phi^\prime w^\prime } \end{matrix} \right] = \Phi \bold U +\overline{\phi^\prime \bold u^\prime} \tag{1.10}
ϕu=(ϕu,ϕv,ϕw)T=⎣⎢⎢⎢⎢⎡ΦU+ϕ′u′ΦV+ϕ′v′ΦW+ϕ′w′⎦⎥⎥⎥⎥⎤=ΦU+ϕ′u′(1.10)
∇
⋅
(
ϕ
u
)
‾
=
∇
⋅
ϕ
u
‾
=
∇
⋅
(
Φ
U
)
+
∇
⋅
(
ϕ
′
u
′
‾
)
(1.11)
\overline{\nabla \cdot (\phi \bold u)} = \nabla \cdot \overline{\phi \bold u} =\nabla \cdot (\Phi \bold U) + \nabla \cdot (\overline{\phi^\prime \bold u^\prime}) \tag{1.11}
∇⋅(ϕu)=∇⋅ϕu=∇⋅(ΦU)+∇⋅(ϕ′u′)(1.11)
∇
ϕ
‾
=
(
∂
ϕ
∂
x
,
∂
ϕ
∂
y
,
∂
ϕ
∂
z
)
T
‾
=
(
∂
ϕ
ˉ
∂
x
,
∂
ϕ
ˉ
∂
x
,
∂
ϕ
ˉ
∂
x
)
T
=
(
∂
Φ
∂
x
,
∂
Φ
∂
x
,
∂
Φ
∂
x
)
T
=
∇
Φ
(1.12)
\overline{\nabla \phi} =\overline{\left(\frac{\partial \phi}{\partial x},\frac{\partial \phi}{\partial y},\frac{\partial \phi}{\partial z}\right)^T} = \left( \frac{ \partial \bar \phi}{\partial x} ,\frac{ \partial \bar \phi}{\partial x},\frac{ \partial \bar \phi}{\partial x} \right)^T =\left( \frac{\partial \Phi}{\partial x} ,\frac{\partial \Phi}{\partial x},\frac{\partial \Phi}{\partial x}\right)^T = \nabla \Phi \tag{1.12}
∇ϕ=(∂x∂ϕ,∂y∂ϕ,∂z∂ϕ)T=(∂x∂ϕˉ,∂x∂ϕˉ,∂x∂ϕˉ)T=(∂x∂Φ,∂x∂Φ,∂x∂Φ)T=∇Φ(1.12)
∇
⋅
∇
ϕ
‾
=
∇
⋅
∇
ϕ
‾
=
∇
⋅
∇
Φ
(1.13)
\overline{\nabla \cdot \nabla \phi} = \nabla \cdot \overline{\nabla \phi} = \nabla \cdot \nabla \Phi \tag{1.13}
∇⋅∇ϕ=∇⋅∇ϕ=∇⋅∇Φ(1.13)
∇
⋅
∇
\nabla \cdot \nabla
∇⋅∇也可写作
∇
2
\nabla^2
∇2,即拉普拉斯算子。
2. 雷诺平均方程的推导过程
有了上述准备,推导雷诺平均方程就容易多了,这里考虑三维笛卡尔坐标系下瞬态不可压的连续性方程和N-S方程,忽略体积力,方程如下:
∇
⋅
u
=
0
(2.1)
\nabla \cdot \bold u = 0 \tag{2.1}
∇⋅u=0(2.1)
∂ u ∂ t + ∇ ⋅ ( u u ) = − 1 ρ ∂ p ∂ x + ν ∇ 2 u (2.2a) \frac{\partial u}{\partial t} + \nabla \cdot (u \bold u) = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \nabla^2 u \tag{2.2a} ∂t∂u+∇⋅(uu)=−ρ1∂x∂p+ν∇2u(2.2a)
∂ v ∂ t + ∇ ⋅ ( v u ) = − 1 ρ ∂ p ∂ y + ν ∇ 2 v (2.2b) \frac{\partial v}{\partial t} + \nabla \cdot (v \bold u) = -\frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \nabla^2 v \tag{2.2b} ∂t∂v+∇⋅(vu)=−ρ1∂y∂p+ν∇2v(2.2b)
∂
w
∂
t
+
∇
⋅
(
w
u
)
=
−
1
ρ
∂
p
∂
z
+
ν
∇
2
w
(2.2c)
\frac{\partial w}{\partial t} + \nabla \cdot (w \bold u) = -\frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \nabla^2 w \tag{2.2c}
∂t∂w+∇⋅(wu)=−ρ1∂z∂p+ν∇2w(2.2c)
雷诺平均方程的思想就是先将方程中的流动变量分解成平均量和脉动量之和,然后对方程两边同时取时间平均。根据雷诺分解,方程中的各瞬时量分解如下:
u
=
U
+
u
′
u
=
U
+
u
′
v
=
V
+
v
′
w
=
W
+
w
′
p
=
P
+
p
′
(2.3)
\bold u = \bold U + \bold u^\prime \quad u=U+u^\prime \quad v=V+v^\prime \quad w=W+w^\prime \quad p=P + p^\prime \tag{2.3}
u=U+u′u=U+u′v=V+v′w=W+w′p=P+p′(2.3)
将
(
2.3
)
(2.3)
(2.3)各式代入到式
(
2.1
)
(2.1)
(2.1)~
(
2.2
c
)
(2.2c)
(2.2c)中,然后对方程取时间平均,再根据第1节中的运算规律对方程进行整理。
先来推导方程
(
2.1
)
(2.1)
(2.1),根据式
(
1.9
)
(1.9)
(1.9)
∇
⋅
u
‾
=
∇
⋅
u
‾
=
∇
⋅
U
\overline{\nabla \cdot \bold u} = \nabla \cdot \overline \bold u = \nabla \cdot \bold U
∇⋅u=∇⋅u=∇⋅U
于是得到平均流的连续性方程:
∇
⋅
U
=
0
(2.4)
\nabla \cdot \bold U = 0 \tag{2.4}
∇⋅U=0(2.4)
其中
U
\bold U
U是平均流速度矢量,写成分量形式为
∂
U
∂
x
+
∂
V
∂
y
+
∂
W
∂
z
=
0
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} +\frac{\partial W}{\partial z} = 0
∂x∂U+∂y∂V+∂z∂W=0
推导方程
(
2.2
a
)
(2.2a)
(2.2a):
方程左边第一项,根据式
(
1.3
)
(1.3)
(1.3)
∂
u
∂
t
‾
=
∂
U
∂
t
\overline{\frac{\partial u}{\partial t}} = \frac{\partial U}{\partial t}
∂t∂u=∂t∂U
左边第二项,根据式
(
1.11
)
(1.11)
(1.11)
∇
⋅
(
u
u
)
‾
=
∇
⋅
(
U
U
)
+
∇
⋅
(
u
′
u
′
‾
)
\overline{\nabla \cdot (u\bold u)} = \nabla \cdot (U\bold U) + \nabla \cdot (\overline{u^\prime \bold u^\prime})
∇⋅(uu)=∇⋅(UU)+∇⋅(u′u′)
方程右边第一项,
−
1
ρ
∂
p
∂
x
‾
=
−
1
ρ
∂
p
ˉ
∂
x
=
−
1
p
∂
P
∂
x
\overline{-\frac{1}{\rho} \frac{\partial p}{\partial x}} = -\frac{1}{\rho} \frac{\partial \bar p}{\partial x} = -\frac{1}{p} \frac{\partial P}{\partial x}
−ρ1∂x∂p=−ρ1∂x∂pˉ=−p1∂x∂P
右边第二项,根据式
(
1.13
)
(1.13)
(1.13)
ν
∇
2
u
‾
=
ν
∇
2
U
\overline{\nu \nabla^2 u} = \nu \nabla^2 U
ν∇2u=ν∇2U
综上,对方程
(
2.2
a
)
(2.2a)
(2.2a)取时间平均得到
x
x
x分量的时均动量方程:
∂ U ∂ t + ∇ ⋅ ( U U ) + ∇ ⋅ ( u ′ u ′ ‾ ) = − 1 ρ ∂ P ∂ x + ν ∇ 2 U ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) (2.5a) \begin{aligned} \frac{\partial U}{\partial t} + \nabla \cdot (U \bold U) + \nabla \cdot (\overline{u^\prime \bold u^\prime}) = -\frac{1}{\rho} \frac{\partial P}{\partial x} + \nu \nabla^2U \tag{2.5a} \\ (1) \quad \qquad (2) \qquad \qquad (3) \qquad \qquad (4) \qquad \quad(5) \end{aligned} ∂t∂U+∇⋅(UU)+∇⋅(u′u′)=−ρ1∂x∂P+ν∇2U(1)(2)(3)(4)(5)(2.5a)
同样的推导过程可以得到
y
y
y和
z
z
z分量的时均动量方程:
∂
V
∂
t
+
∇
⋅
(
V
U
)
+
∇
⋅
(
v
′
u
′
‾
)
=
−
1
ρ
∂
P
∂
y
+
ν
∇
2
V
(2.5b)
\frac{\partial V}{\partial t} + \nabla \cdot (V \bold U) + \nabla \cdot (\overline{v^\prime \bold u^\prime}) = -\frac{1}{\rho} \frac{\partial P}{\partial y} + \nu \nabla^2V \tag{2.5b}
∂t∂V+∇⋅(VU)+∇⋅(v′u′)=−ρ1∂y∂P+ν∇2V(2.5b)
∂
W
∂
t
+
∇
⋅
(
W
U
)
+
∇
⋅
(
w
′
u
′
‾
)
=
−
1
ρ
∂
P
∂
z
+
ν
∇
2
W
(2.5c)
\frac{\partial W}{\partial t} + \nabla \cdot (W \bold U) + \nabla \cdot (\overline{w^\prime \bold u^\prime}) = -\frac{1}{\rho} \frac{\partial P}{\partial z} + \nu \nabla^2W \tag{2.5c}
∂t∂W+∇⋅(WU)+∇⋅(w′u′)=−ρ1∂z∂P+ν∇2W(2.5c)
以方程
(
2.5
a
)
(2.5a)
(2.5a)为例,可以看到第(2)、(3)项都是来自原方程的对流项,第(3)项是湍流脉动量的乘积,是时间平均后多出来的项,其代表的物理含义是湍流涡的对流所引起动量输运,这就类似于流体在粘性剪应力的作用下又附加了湍流剪应力。所以习惯上,这一项会移到方程的右边和粘性项放在一起,以反应其物理属性。为了展示湍流应力的结构,把第(3)项中的脉动速度矢量写出分量形式,并移到等号右边,则有
∂
U
∂
t
+
∇
⋅
(
U
U
)
=
−
1
ρ
∂
P
∂
x
+
ν
∇
2
U
+
1
ρ
[
∂
(
−
ρ
u
′
2
‾
)
∂
x
+
∂
(
−
ρ
u
′
v
′
‾
)
∂
y
+
∂
(
−
ρ
u
′
w
′
‾
)
∂
z
]
(2.6a)
\begin{aligned} \frac{\partial U}{\partial t} + \nabla \cdot (U \bold U) =& -\frac{1}{\rho} \frac{\partial P}{\partial x}+\nu \nabla^2U \\ &+\frac{1}{\rho}\left[ \frac{\partial (-\rho \overline{u^{\prime 2}})}{\partial x} + \frac{\partial (-\rho \overline{u^{\prime }v^\prime})}{\partial y} +\frac{\partial (-\rho \overline{u^{\prime }w^\prime})}{\partial z} \right] \tag{2.6a} \end{aligned}
∂t∂U+∇⋅(UU)=−ρ1∂x∂P+ν∇2U+ρ1[∂x∂(−ρu′2)+∂y∂(−ρu′v′)+∂z∂(−ρu′w′)](2.6a)
∂
V
∂
t
+
∇
⋅
(
V
U
)
=
−
1
ρ
∂
P
∂
y
+
ν
∇
2
V
+
1
ρ
[
∂
(
−
ρ
u
′
v
′
‾
)
∂
x
+
∂
(
−
ρ
v
′
2
‾
)
∂
y
+
∂
(
−
ρ
v
′
w
′
‾
)
∂
z
]
(2.6b)
\begin{aligned} \frac{\partial V}{\partial t} + \nabla \cdot (V \bold U) =& -\frac{1}{\rho} \frac{\partial P}{\partial y}+\nu \nabla^2V \\ & +\frac{1}{\rho}\left[ \frac{\partial (-\rho \overline{u^{\prime} v^\prime})}{\partial x} + \frac{\partial (-\rho \overline{v^{\prime2} })}{\partial y} +\frac{\partial (-\rho \overline{v^{\prime }w^\prime})}{\partial z} \right] \tag{2.6b} \end{aligned}
∂t∂V+∇⋅(VU)=−ρ1∂y∂P+ν∇2V+ρ1[∂x∂(−ρu′v′)+∂y∂(−ρv′2)+∂z∂(−ρv′w′)](2.6b)
∂
W
∂
t
+
∇
⋅
(
W
U
)
=
−
1
ρ
∂
P
∂
z
+
ν
∇
2
W
+
1
ρ
[
∂
(
−
ρ
u
′
w
′
‾
)
∂
x
+
∂
(
−
ρ
v
′
w
′
‾
)
∂
y
+
∂
(
−
ρ
w
′
2
‾
)
∂
z
]
(2.6c)
\begin{aligned} \frac{\partial W}{\partial t} + \nabla \cdot (W \bold U) =& -\frac{1}{\rho} \frac{\partial P}{\partial z}+\nu \nabla^2W \\ & +\frac{1}{\rho}\left[ \frac{\partial (-\rho \overline{u^{\prime} w^\prime})}{\partial x} + \frac{\partial (-\rho \overline{v^{\prime }w^\prime})}{\partial y} +\frac{\partial (-\rho \overline{w^{\prime2 }})}{\partial z} \right] \tag{2.6c} \end{aligned}
∂t∂W+∇⋅(WU)=−ρ1∂z∂P+ν∇2W+ρ1[∂x∂(−ρu′w′)+∂y∂(−ρv′w′)+∂z∂(−ρw′2)](2.6c)
湍流应力一共有6个独立分量,包括3个法向应力分量:
τ
x
x
=
−
ρ
u
′
2
‾
τ
y
y
=
−
ρ
v
′
2
‾
τ
z
z
=
−
ρ
w
′
2
‾
\tau_{xx}=-\rho \overline{u^{\prime 2}} \quad \tau_{yy}=-\rho \overline{v^{\prime 2}} \quad \tau_{zz}=-\rho \overline{w^{\prime 2}}
τxx=−ρu′2τyy=−ρv′2τzz=−ρw′2
和3个切应力分量:
τ
x
y
=
τ
y
x
=
−
ρ
u
′
v
′
‾
τ
x
z
=
τ
z
x
=
−
ρ
u
′
w
′
‾
τ
z
y
=
τ
y
z
=
−
ρ
w
′
v
′
‾
\tau_{xy}=\tau_{yx}=-\rho \overline{u^\prime v^\prime} \quad \tau_{xz}=\tau_{zx}=-\rho \overline{u^\prime w^\prime} \quad \tau_{zy}=\tau_{yz}=-\rho \overline{w^\prime v^\prime} \quad
τxy=τyx=−ρu′v′τxz=τzx=−ρu′w′τzy=τyz=−ρw′v′
这些湍流应力称为雷诺应力,方程式
(
2.4
)
(2.4)
(2.4)和
(
2.6
a
)
(2.6a)
(2.6a)~
(
2.6
c
)
(2.6c)
(2.6c)称为雷诺平均N-S方程(RANS)。
参考资料:
- Versteeg H K , Malalasekera W . An introduction to computational fluid dynamics : the finite volume method = 计算流体动力学导论[M]. 世界图书出版公司, 2010.