OpenCV开发笔记(七十九):基于Stitcher类实现全景图片拼接

前言

  一个摄像头视野不大的时候,我们希望进行两个视野合并,这样让正视的视野增大,从而可以看到更广阔的标准视野。拼接的方法分为两条路,第一条路是stitcher类,第二条思路是特征点匹配。
  本篇使用stitcher匹配,进行两张图来视野合并拼接。

 

Demo

  在这里插入图片描述

 

两张图拼接过程

步骤一:打开图片

  在这里插入图片描述

cv::Mat mat = cv::imread("D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/29.jpg");
cv::Mat mat2 = cv::imread("D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/30.jpg");

步骤二:加入图片进入队列

  在这里插入图片描述

std::vector<cv::Mat> vectorMat;
vectorMat.push_back(mat);
vectorMat.push_back(mat2);

步骤三:创建拼接类

  在这里插入图片描述

cv::Ptr<cv::Stitcher> pStitcher = cv::Stitcher::create(cv::Stitcher::PANORAMA, false);
//cv::Ptr<cv::Stitcher> pStitcher = cv::Stitcher::create(cv::Stitcher::SCANS, false);

步骤四:拼接

  在这里插入图片描述

cv::Ptr<cv::Stitcher> pStitcher = cv::Stitcher::create(cv::Stitcher::SCANS, false);
LOG;
cv::Stitcher::Status status = pStitcher->stitch(vectorMat, resultMat);
LOG;
if(status != cv::Stitcher::OK)
{
    std::cout << "Failed to stitch, status =" << status << std::endl;
    return;
}

  对拼接后显示所有:
  在这里插入图片描述

cv::namedWindow("mat", cv::WINDOW_NORMAL);
cv::imshow("mat", mat);
cv::resizeWindow("mat", cv::Size(400, 300));

cv::namedWindow("mat2", cv::WINDOW_NORMAL);
cv::imshow("mat2", mat2);
cv::resizeWindow("mat2", cv::Size(400, 300));

cv::namedWindow("resultMat", cv::WINDOW_NORMAL);
cv::imshow("resultMat", resultMat);
cv::resizeWindow("resultMat", cv::Size(400, 300));

步骤五:对图像进行宽高黑边裁剪(略)

  直接写个算法对周边黑色区域进行矩形探测,然后裁剪即可,方法很多,一般我们拍照的图片都不是全黑的,而黑边是全黑的,这个算法写起来有明显的特征。

 

耗时测试

原始图像1701x1280像素,耗时477ms左右

  在这里插入图片描述

  在这里插入图片描述

  原始图片1701x1280像素,拼接消耗的时间约477ms:

图像缩小至400x300像素,耗时390ms左右

  然后对其图片进行缩放后测试其耗时:
  在这里插入图片描述

  在这里插入图片描述

  将图片统一缩放为800x600分辨率,其拼接耗时在390ms左右。

图像放大至1920x1080像素,耗时530ms左右

  在这里插入图片描述

  在这里插入图片描述

  将图片放大至1920x1080分辨率,其拼接耗时在530ms左右

注意

  本次测试并不严谨,基于同样图的缩放,单纯控制像素缩放来比较,但是得出的结论可以反应图像大小的影响,最终的耗时是受多方因素影响,包括但不限于检测特征电的数量、重叠区域的大小、像素分辨率、多图。

结论

  这种方式适合对照片进行拼接,对黑边处理之后,效果很不错,但是,调用stitcher类实现时对图片的特征匹配有要求,一些特征点不够的图片无法拼接,并且,当图片较大或多张图片拼接时,速度慢。所以,倘若放到视频上,一秒钟25-60fps,那就肯定不行了。
  SIFT算法拼接,SIFT算法可以提供较高的准确率,得到的图片需要经过再次处理,才能得到相对较好的图片,
  ORB算法拼接,算法的速度非常快,但是最容易出现问题,且得到的图片需要经过再次处理,才能得到相对较好的图片,

 

函数原型

函数cv::Stitcher::create

static Ptr<Stitcher> create(Mode mode = PANORAMA, bool try_use_gpu = false);
  • 参数一:拼接模式枚举,只有2个值PANORAMA和SCANS
    PANORAMA:创建照片全景的模式,期望图像处于透视状态;
    SCANS:合成扫描的模式。期望仿射变换下的图像,默认情况下不补偿曝光。(由于咱们一般总归有角度偏移,所以这个方式对拼接图像有较高要求)
  • 参数二:是否使用gpu,这种方式编译opencv得带上gpu编译,编译opencv的时候开启支持gpu,在arm上的话,需要先确认芯片是否支持GPU,然后安装GPU驱动,然后编译opencv支持GPU选项,才可以。

函数cv::Stitcher:: stitch

CV_WRAP Status stitch(InputArrayOfArrays images, OutputArray pano);
  • 参数一:输入图像列表
  • 参数二:输出拼接结果
Status stitch(InputArrayOfArrays images, const std::vector<std::vector<Rect> > &rois, OutputArray pano);
  • 参数一:输入图像列表
  • 参数二:输入图像列表依次需要拼接的区域
  • 参数三:输出拼接结果
 

Demo源码

void OpenCVManager::testStitchImages()
{
    cv::Mat mat = cv::imread("D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/29.jpg");
    cv::Mat mat2 = cv::imread("D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/30.jpg");

#if 0
    // 拼接环视全景,特征点是完全不够,无法使用该方法,同时就算能拼也无法达到新能要求
    cv::Mat mat = cv::imread("D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/front_2024-08-22_17-15-08_result.png");
    cv::Mat mat2 = cv::imread("D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/left_2024-08-22_17-15-10_result.png");
    cv::Mat mat2 = cv::imread("D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/right_2024-08-22_17-15-11_result.png");
#endif

#if 1
    // 对图片进行缩放,测试其拼接耗时
    cv::resize(mat, mat, cv::Size(1920, 1080));
    cv::resize(mat2, mat2, cv::Size(1920, 1080));
#endif

    std::vector<cv::Mat> vectorMat;
    vectorMat.push_back(mat);
    vectorMat.push_back(mat2);


    cv::Mat resultMat;

    cv::Ptr<cv::Stitcher> pStitcher = cv::Stitcher::create(cv::Stitcher::PANORAMA, false);
//    cv::Ptr<cv::Stitcher> pStitcher = cv::Stitcher::create(cv::Stitcher::SCANS, false);
    LOG;
    cv::Stitcher::Status status = pStitcher->stitch(vectorMat, resultMat);
    LOG;
    if(status != cv::Stitcher::OK)
    {
        std::cout << "Failed to stitch, status =" << status << std::endl;
        return;
    }


    cv::namedWindow("mat", cv::WINDOW_NORMAL);
    cv::imshow("mat", mat);
    cv::resizeWindow("mat", cv::Size(400, 300));

    cv::namedWindow("mat2", cv::WINDOW_NORMAL);
    cv::imshow("mat2", mat2);
    cv::resizeWindow("mat2", cv::Size(400, 300));

    cv::namedWindow("resultMat", cv::WINDOW_NORMAL);
    cv::imshow("resultMat", resultMat);
    cv::resizeWindow("resultMat", cv::Size(400, 300));

    cv::waitKey(0);
}
 

对应工程模板v1.69.0

  在这里插入图片描述

原创作者: qq21497936 转载于: https://www.cnblogs.com/qq21497936/p/18380860
压缩包中包含的具体内容: 对给定数据中的6个不同场景图像,进行全景拼接操作,具体要求如下: (1) 寻找关键点,获取关键点的位置和尺度信息(DoG检测子已由KeypointDetect文件夹中的detect_features_DoG.m文件实现;请参照该算子,自行编写程序实现Harris-Laplacian检测子)。 (2) 在每一幅图像中,对每个关键点提取待拼接图像的SIFT描述子(编辑SIFTDescriptor.m文件实现该操作,运行EvaluateSIFTDescriptor.m文件检查实现结果)。 (3) 比较来自两幅不同图像的SIFT描述子,寻找匹配关键点(编辑SIFTSimpleMatcher.m文件计算两幅图像SIFT描述子间的Euclidean距离,实现该操作,运行EvaluateSIFTMatcher.m文件检查实现结果)。 (4) 基于图像中的匹配关键点,对两幅图像进行配准。请分别采用最小二乘方法(编辑ComputeAffineMatrix.m文件实现该操作,运行EvaluateAffineMatrix.m文件检查实现结果)和RANSAC方法估计两幅图像间的变换矩阵(编辑RANSACFit.m 文件中的ComputeError()函数实现该操作,运行TransformationTester.m文件检查实现结果)。 (5) 基于变换矩阵,对其中一幅图像进行变换处理,将其与另一幅图像进行拼接。 (6) 对同一场景的多幅图像进行上述操作,实现场景的全景拼接(编辑MultipleStitch.m文件中的makeTransformToReferenceFrame函数实现该操作)。可以运行StitchTester.m查看拼接结果。 (7) 请比较DoG检测子和Harris-Laplacian检测子的实验结果。图像拼接的效果对实验数据中的几个场景效果不同,请分析原因。 已经实现这些功能,并且编译运行均不报错!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值