离散信源信息量、平均信息量的计算

信息量I与消息出现的概率 P(x) 之间的关系:
1.信息量是概率的函数,即I=f[P(x)]
2.P(x) 越小,I越大,P(x) 越大,I越小;
3.若干个相互独立事件构成的消息,所含信息量等于各独立事件信息量之和,信息量具有相加性。
信息量的计算公式如下:
在这里插入图片描述
其中,a=2时,单位为比特(bit);
a=e时,单位为奈特(nit);
a=10时,单位为哈莱特。
当消息很长时,用符号出现概率来计算消息的信息量是比较麻烦的,此时可以用平均信息量的概念来计算,所谓平均信息量是指每个符号所含信息量的统计平均值,因此N个符号的离散消息的平均信息量
在这里插入图片描述
上述平均信息量计算公式与热力学和统计力学中关于系统熵的公式一样,因此我们也把信源输出消息的平均信息量叫做信源的熵
下面来通过一个例题加深印象。

例:某离散信源由0,1,2,3四个符号组成,它们出现的概率分别是3/8,1/4,1/4,1/8,且每个符号的出现都是独立的。试求消息序列:201020130213001203210100321010023102002010312032100120210的信息量。

解答如下:
此消息共有57个符号,其中,0出现了23次,1出现了14次,2出现了13次,3出现了7次。
该消息的信息量计算如下:
在这里插入图片描述
从而每个符号的平均信息量为:
在这里插入图片描述
若用平均信息量(信源的熵)来计算:
在这里插入图片描述
则该消息的信息量为:
在这里插入图片描述
这个例题到此就解答完毕了。
希望以上内容对你有帮助!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西岸贤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值