减号广义逆:设矩阵A(m∗n阶),若存在矩阵G(n∗m阶),使得AGA=A,则称G为A的一个减号广义逆。
A的全部减号广义逆的集合记为A{1}。
设矩阵A(m∗n阶),其秩rank(A)=r,若存在可逆阵P(m∗m阶)和Q(n∗n阶),使得:
则G∈A{1}的充分必要条件是:
其中U是r∗(m-r)阶矩阵,V是(n-r)∗r阶矩阵,W 是(n-r)∗(m-r)阶矩阵。
减号广义逆的例子见下图。
加号广义逆:设矩阵A(m∗n阶),若存在矩阵G(n∗m阶),使得:
则称G为A的Moore-Penrose广义逆或加号广义逆,简称为A的M-P逆,记作A+。
加号广义逆的例子见下图。
矩阵的广义逆——减号、加号广义逆的求法
最新推荐文章于 2025-02-11 21:33:10 发布