低通抽样定理
一个频带限制在 (0,
f
H
f_H
fH) 内的低通信号 m(t),如果以
f
s
f_s
fs≥2
f
H
f_H
fH 的速率进行均匀抽样,则由抽样序列 {m(n
T
s
T_s
Ts)} 可无失真地恢复出 m(t)。其中,
f
H
f_H
fH为上限频率,
f
s
f_s
fs为抽样速率,
T
s
T_s
Ts为抽样间隔。
均匀抽样即等间隔抽样。
f
s
f_s
fs=2
f
H
f_H
fH 是最小的抽样速率,也称为奈奎斯特抽样速率。
T
s
T_s
Ts=
1
f
s
\frac{1}{f_s}
fs1,可见抽样速率越小,抽样间隔越大。
T
s
T_s
Ts=
1
2
f
H
\frac{1}{2f_H}
2fH1 称为奈奎斯特抽样间隔。
当抽样速率
f
s
f_s
fs<2
f
H
f_H
fH 时,就会出现频谱混叠。
带通抽样定理
频带限制在 (
f
L
f_L
fL,
f
H
f_H
fH) 内的带通信号 m(t),带宽 B=
f
H
f_H
fH-
f
L
f_L
fL,若
f
H
f_H
fH=nB+kB(其中n∈N,0≤k<1),则能无失真恢复出 m(t) 的最小抽样速率
f
s
f_s
fs=2B(1+
k
n
\frac{k}{n}
nk)。
如果以上面的最小抽样速率对带通信号进行抽样,则抽样后的信号频谱既不留空隙,也无混叠现象。 需要注意的是,抽样速率大于此数值,不一定都满足要求。
例题:
f
L
f_L
fL=100.5MHz,
f
H
f_H
fH=100.9MHz,
f
H
f_H
fH=252B+0.25B
解:带宽:B =
f
H
f_H
fH-
f
L
f_L
fL=0.4MHz=400kHz
带通抽样速率:
f
s
f_s
fs=2B(1+
k
n
\frac{k}{n}
nk)=2×400kHz×(1+
0.25
252
\frac{0.25}{252}
2520.25)=800.8kHz
如果上面的例题用低通抽样定理,则抽样速率大于等于2倍的
f
H
f_H
fH,至少得201.8MHz,相比于800.8kHz要大很多,因此在实现上就比较难,因此带通信号用带通抽样定理解决。
在实际中,下限频率
f
L
f_L
fL要比带宽大得多。
带通抽样速率
f
s
f_s
fs与下限频率
f
L
f_L
fL的关系曲线如下图所示。
上图是根据式子
f
s
f_s
fs=2B(1+
k
n
\frac{k}{n}
nk) 绘制的,k=0时,
f
s
f_s
fs取最小值2B,k=1时,
f
s
f_s
fs取不同n下的最大值。
参考视频:
抽样定理