低通和带通抽样定理

低通抽样定理

一个频带限制在 (0, f H f_H fH) 内的低通信号 m(t),如果以 f s f_s fs≥2 f H f_H fH 的速率进行均匀抽样,则由抽样序列 {m(n T s T_s Ts)} 可无失真地恢复出 m(t)。其中, f H f_H fH为上限频率, f s f_s fs为抽样速率, T s T_s Ts为抽样间隔。
均匀抽样即等间隔抽样。
f s f_s fs=2 f H f_H fH 是最小的抽样速率,也称为奈奎斯特抽样速率。
T s T_s Ts= 1 f s \frac{1}{f_s} fs1,可见抽样速率越小,抽样间隔越大。 T s T_s Ts= 1 2 f H \frac{1}{2f_H} 2fH1 称为奈奎斯特抽样间隔。
当抽样速率 f s f_s fs<2 f H f_H fH 时,就会出现频谱混叠。

带通抽样定理

频带限制在 ( f L f_L fL f H f_H fH) 内的带通信号 m(t),带宽 B= f H f_H fH- f L f_L fL,若 f H f_H fH=nB+kB(其中n∈N,0≤k<1),则能无失真恢复出 m(t) 的最小抽样速率 f s f_s fs=2B(1+ k n \frac{k}{n} nk)。
在这里插入图片描述
如果以上面的最小抽样速率对带通信号进行抽样,则抽样后的信号频谱既不留空隙,也无混叠现象。 需要注意的是,抽样速率大于此数值,不一定都满足要求。
例题: f L f_L fL=100.5MHz, f H f_H fH=100.9MHz, f H f_H fH=252B+0.25B
解:带宽:B = f H f_H fH- f L f_L fL=0.4MHz=400kHz
带通抽样速率: f s f_s fs=2B(1+ k n \frac{k}{n} nk)=2×400kHz×(1+ 0.25 252 \frac{0.25}{252} 2520.25)=800.8kHz
如果上面的例题用低通抽样定理,则抽样速率大于等于2倍的 f H f_H fH,至少得201.8MHz,相比于800.8kHz要大很多,因此在实现上就比较难,因此带通信号用带通抽样定理解决。
在实际中,下限频率 f L f_L fL要比带宽大得多。
带通抽样速率 f s f_s fs与下限频率 f L f_L fL的关系曲线如下图所示。
在这里插入图片描述
上图是根据式子 f s f_s fs=2B(1+ k n \frac{k}{n} nk) 绘制的,k=0时, f s f_s fs取最小值2B,k=1时, f s f_s fs取不同n下的最大值。

参考视频:
抽样定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西岸贤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值