带通抽样定理的理解

带通信号抽样速率的一统性研究(篇二):带通抽样定理的理解

写在前:

  本篇是《带通信号抽样速率的一统性研究》的篇二,基础知识部分。主要从频域角度对低通抽样定理进行了介绍

  上一篇我们探讨了对低通信号的抽样和恢复:低通抽样定理的理解。在实际工程中经常遇到带通型信号,即频谱不是从直流开始,而是在 f L ∽ f H f_L \backsim f_H fLfH的一段频带内的信号。设信号带宽 B = f H − f L B=f_H-f_L B=fHfL,通常把 f L > B f_L>B fL>B的信号称为带通信号。

  现在我们给定带通信号 m ( t ) m(t) m(t),其频谱 M ( f ) M(f) M(f)位于 f L ≤ f ≤ f H f_L\leq f\leq f_H fLffH上,带宽为 B = f H − f L B=f_H-f_L B=fHfL,如果以抽样间隔 T s T_s Ts(即速率 f s f_s fs)进行抽样,要求从抽样序列 { m n = m ( n T s ) , n = 0 , ± 1 , ± 2 , … } \big\{m_n=m(nT_s),n=0,\pm1,\pm2,…\big\} {mn=m(nTs)n=0,±1,±2,}中能够完全还原 m ( t ) m(t) m(t),那么 T s T_s Ts(或 f s f_s fs)应该如何选取?

  显然,按照带限信号抽样定理,使 f s > 2 f H f_s>2f_H fs>2fH,上述要求是可以满足的。然而,下面将说明,使 f s f_s fs [ 2 B , 4 B ] \big[2B,4B\big] [2B,4B]之间的某些值也是可行的。由于很多时候 f H ≫ B f_H\gg B fHB,使我们即将阐述的这个结论给出的 f s f_s fs比按照低通抽样定理给出的低很多,因而,这一结论是很有用的。从前面的分析可见,抽样过程使频谱按 f s f_s fs重复,而正确的抽样的信号是频谱重复过程中不能相互交叠。依据这一想法,下面分两种情形来讨论。

  1、 f H f_H fH B B B的整数倍

  这时 f H = n B f_H=nB fH=nB n n n为某正整数。图1以 n = 3 n=3 n=3为例示意了这种情形,图中分别示出了带通信号的正负频率部分按 f s = 2 B f_s=2B fs=2B的重复过程,易见它们彼此恰巧错开,所有的重复频谱部分不会发生交叠,于是,只要取 f s = 2 B f_s=2B fs=2B,可以正确抽样。
在这里插入图片描述
图 1   f H = n B 的 情 形 图1\ f_H=nB的情形 1 fH=nB

  2、 f H f_H fH不是 B B B的整数倍

  不妨记 f H = n B + p B f_H=nB+pB fH=nB+pB,其中 0 &lt; p &lt; 1 0&lt;p&lt;1 0<p<1。这时可适当下移 f L f_L fL,将带宽扩展为 B ′ B&#x27; B,使 f H f_H fH B ′ B&#x27; B的整数倍,即 f H = n B ′ = n [ B ( 1 + p n ) ] f_H=nB&#x27;=n[B(1+\frac{p}{n})] fH=nB=n[B(1+np)]
可见 B ′ = B ( 1 + p / n ) B&#x27;=B(1+p/n) B=B(1+p/n)。而后可按情形1,取抽样速率 f s = 2 B ′ f_s=2B&#x27; fs=2B就可以正确抽样。

  综上所述,得出带通信号的抽样原则:对于一般带通信号,不妨设 f H = n B + p B f_H=nB+pB fH=nB+pB(其中 n = [ f H / B ] n=[f_H/B] n=[fH/B] n n n是至少为1的正整数,而 0 ≤ p &lt; 1 0\leq p&lt;1 0p<1,等于零的表达已经将低通信号视为一种带通信号), f s f_s fs的选取原则为 f s = 2 B ′ = 2 B ( 1 + p n ) = 2 f H n f_s=2B&#x27;=2B(1+\frac{p}{n})=\frac{2f_H}{n} fs=2B=2B(1+np)=n2fH
可见, 2 B ≤ f s &lt; 4 B 2B\leq f_s&lt;4B 2Bfs<4B

  又由图1.(b)易见,由 M s ( f ) M_s(f) Ms(f)还原 M ( f ) M_(f) M(f)的方法是使用带通滤波器(BPF),即 m ( t ) = B P F [ m s ( t ) ] m(t)=BPF[m_s(t)] m(t)=BPF[ms(t)]
其中,BPF应该对准频率范围: f L ≤ ∣ f ∣ ≤ f H f_L\leq\mid f\mid\leq f_H fLffH

  最后注意到,低通抽样的条件为范围 f s &gt; 2 B f_s&gt;2B fs>2B(参见上一篇低通抽样定理的理解),而带通抽样的条件的精确值 f s = 2 B ( 1 + p / n ) f_s=2B(1+p/n) fs=2B(1+p/n)。其实,带通抽样的条件通常也是某些范围,而 f s = 2 B ( 1 + p / n ) f_s=2B(1+p/n) fs=2B(1+p/n)是这个范围的下限值,从下面的例题可以看到这一点。

在这里插入图片描述在这里插入图片描述

  注意到“带通抽样的条件通常也是某些范围,而 2 B ( 1 + p n ) = 2 f H n 2B(1+\frac{p}{n})=\frac{2f_H}{n} 2B(1+np)=n2fH是这个范围的下限值”,这很容易接受,那么这个范围会是怎样的情况和形式呢,我忍住不作出了进一步的探究。参见下一篇博文,我的个人探究部分:带通信号抽样速率的一统性研究。得出:抽样速率范围是彼此分离的子区间的集合,低通和带通抽样定理包含于这个一统性结论。(哈哈,码了这么久铺垫,终于要写我的个人探究部分啦!)

  注:本篇中的内容和图例参考了李晓峰主编的《通信原理》

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值