带通信号抽样速率的一统性研究(篇二):带通抽样定理的理解
写在前:
本篇是《带通信号抽样速率的一统性研究》的篇二,基础知识部分。主要从频域角度对低通抽样定理进行了介绍。
上一篇我们探讨了对低通信号的抽样和恢复:低通抽样定理的理解。在实际工程中经常遇到带通型信号,即频谱不是从直流开始,而是在 f L ∽ f H f_L \backsim f_H fL∽fH的一段频带内的信号。设信号带宽 B = f H − f L B=f_H-f_L B=fH−fL,通常把 f L > B f_L>B fL>B的信号称为带通信号。
现在我们给定带通信号 m ( t ) m(t) m(t),其频谱 M ( f ) M(f) M(f)位于 f L ≤ f ≤ f H f_L\leq f\leq f_H fL≤f≤fH上,带宽为 B = f H − f L B=f_H-f_L B=fH−fL,如果以抽样间隔 T s T_s Ts(即速率 f s f_s fs)进行抽样,要求从抽样序列 { m n = m ( n T s ) , n = 0 , ± 1 , ± 2 , … } \big\{m_n=m(nT_s),n=0,\pm1,\pm2,…\big\} {mn=m(nTs),n=0,±1,±2,…}中能够完全还原 m ( t ) m(t) m(t),那么 T s T_s Ts(或 f s f_s fs)应该如何选取?
显然,按照带限信号抽样定理,使 f s > 2 f H f_s>2f_H fs>2fH,上述要求是可以满足的。然而,下面将说明,使 f s f_s fs为 [ 2 B , 4 B ] \big[2B,4B\big] [2B,4B]之间的某些值也是可行的。由于很多时候 f H ≫ B f_H\gg B fH≫B,使我们即将阐述的这个结论给出的 f s f_s fs比按照低通抽样定理给出的低很多,因而,这一结论是很有用的。从前面的分析可见,抽样过程使频谱按 f s f_s fs重复,而正确的抽样的信号是频谱重复过程中不能相互交叠。依据这一想法,下面分两种情形来讨论。
1、 f H f_H fH是 B B B的整数倍
这时
f
H
=
n
B
f_H=nB
fH=nB,
n
n
n为某正整数。图1以
n
=
3
n=3
n=3为例示意了这种情形,图中分别示出了带通信号的正负频率部分按
f
s
=
2
B
f_s=2B
fs=2B的重复过程,易见它们彼此恰巧错开,所有的重复频谱部分不会发生交叠,于是,只要取
f
s
=
2
B
f_s=2B
fs=2B,可以正确抽样。
图
1
f
H
=
n
B
的
情
形
图1\ f_H=nB的情形
图1 fH=nB的情形
2、 f H f_H fH不是 B B B的整数倍
不妨记
f
H
=
n
B
+
p
B
f_H=nB+pB
fH=nB+pB,其中
0
<
p
<
1
0<p<1
0<p<1。这时可适当下移
f
L
f_L
fL,将带宽扩展为
B
′
B'
B′,使
f
H
f_H
fH是
B
′
B'
B′的整数倍,即
f
H
=
n
B
′
=
n
[
B
(
1
+
p
n
)
]
f_H=nB'=n[B(1+\frac{p}{n})]
fH=nB′=n[B(1+np)]
可见
B
′
=
B
(
1
+
p
/
n
)
B'=B(1+p/n)
B′=B(1+p/n)。而后可按情形1,取抽样速率
f
s
=
2
B
′
f_s=2B'
fs=2B′就可以正确抽样。
综上所述,得出带通信号的抽样原则:对于一般带通信号,不妨设
f
H
=
n
B
+
p
B
f_H=nB+pB
fH=nB+pB(其中
n
=
[
f
H
/
B
]
n=[f_H/B]
n=[fH/B],
n
n
n是至少为1的正整数,而
0
≤
p
<
1
0\leq p<1
0≤p<1,等于零的表达已经将低通信号视为一种带通信号),
f
s
f_s
fs的选取原则为
f
s
=
2
B
′
=
2
B
(
1
+
p
n
)
=
2
f
H
n
f_s=2B'=2B(1+\frac{p}{n})=\frac{2f_H}{n}
fs=2B′=2B(1+np)=n2fH
可见,
2
B
≤
f
s
<
4
B
2B\leq f_s<4B
2B≤fs<4B。
又由图1.(b)易见,由
M
s
(
f
)
M_s(f)
Ms(f)还原
M
(
f
)
M_(f)
M(f)的方法是使用带通滤波器(BPF),即
m
(
t
)
=
B
P
F
[
m
s
(
t
)
]
m(t)=BPF[m_s(t)]
m(t)=BPF[ms(t)]
其中,BPF应该对准频率范围:
f
L
≤
∣
f
∣
≤
f
H
f_L\leq\mid f\mid\leq f_H
fL≤∣f∣≤fH。
最后注意到,低通抽样的条件为范围 f s > 2 B f_s>2B fs>2B(参见上一篇低通抽样定理的理解),而带通抽样的条件的精确值 f s = 2 B ( 1 + p / n ) f_s=2B(1+p/n) fs=2B(1+p/n)。其实,带通抽样的条件通常也是某些范围,而 f s = 2 B ( 1 + p / n ) f_s=2B(1+p/n) fs=2B(1+p/n)是这个范围的下限值,从下面的例题可以看到这一点。
注意到“带通抽样的条件通常也是某些范围,而 2 B ( 1 + p n ) = 2 f H n 2B(1+\frac{p}{n})=\frac{2f_H}{n} 2B(1+np)=n2fH是这个范围的下限值”,这很容易接受,那么这个范围会是怎样的情况和形式呢,我忍住不作出了进一步的探究。参见下一篇博文,我的个人探究部分:带通信号抽样速率的一统性研究。得出:抽样速率范围是彼此分离的子区间的集合,低通和带通抽样定理包含于这个一统性结论。(哈哈,码了这么久铺垫,终于要写我的个人探究部分啦!)
注:本篇中的内容和图例参考了李晓峰主编的《通信原理》