Learnopencv:掌握OpenCV的C++和Python实践指南

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:OpenCV是一个功能强大的计算机视觉和人工智能库,"LearnOpencv"项目提供了一个包含C++和Python示例的学习资源库。它适合初学者和经验丰富的开发者,介绍了图像处理、特征检测、对象识别等技术,并展示了如何使用OpenCV的机器学习模块进行分类器训练,以及如何部署深度学习模型进行图像分类和目标检测。此外,还包含了从基础到高级操作的博客文章和示例代码,以便于快速理解OpenCV的应用,并建立计算机视觉和AI领域的坚实基础。 OpenCV

1. OpenCV基础与应用概述

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,它被广泛地用于图像处理、计算机视觉和模式识别领域。在本章中,我们将首先探讨OpenCV的含义、起源和应用,接着介绍其核心组件及如何在不同开发环境下进行配置。

1.1 OpenCV简介与历史

OpenCV于1999年首次推出,最初由英特尔公司支持,是为了解决计算机视觉领域中的问题而设计的。它旨在提供一个高效的计算机视觉库,使得研究人员和开发者能够更容易地实现复杂算法。随着时间的推移,OpenCV不断吸收新的技术和研究,发展成为一个功能强大、效率高、跨平台的计算机视觉库。

1.2 OpenCV的核心功能

OpenCV的核心功能涵盖了图像处理、特征检测、物体识别、运动跟踪、摄像机标定和3D重建等多个方面。开发者可以利用这些功能快速地创建复杂的应用,如面部识别、机器视觉检测系统以及医疗影像分析等。

1.3 OpenCV应用环境配置

为了在不同的编程环境中使用OpenCV,我们需要先进行环境配置。无论是使用C++还是Python,基本步骤相似,包括安装OpenCV库以及配置必要的开发工具链。以Python为例,开发者通常会使用pip安装命令来快速搭建环境: pip install opencv-python 。对于C++则需要添加OpenCV的库路径到项目配置中。

通过本章,我们将为读者建立起OpenCV的基本概念,为后续章节更深入的学习和应用打下坚实的基础。随着计算机视觉技术的快速发展,掌握OpenCV的重要性变得日益凸显,接下来我们将深入探讨在不同编程语言中如何高效地应用OpenCV。

2. C++和Python示例项目深入

2.1 C++在OpenCV中的应用实践

2.1.1 C++环境配置与项目结构

在开始我们的C++ OpenCV之旅之前,首先需要确保我们的开发环境已经搭建完毕。对于C++而言,开发环境通常由编译器、链接器、调试器以及必要的库文件组成。在这一节中,我们将通过以下步骤进行环境配置和项目结构创建。

首先,确保安装了支持C++的IDE,如Visual Studio、CLion或Code::Blocks。然后,配置OpenCV库的路径。以Visual Studio为例,在项目属性中找到“配置属性” -> “C/C++” -> “常规”,添加包含目录和库目录到OpenCV的安装路径。接着,在链接器配置中添加OpenCV库文件。

接下来,配置项目的目录结构。一个典型的项目结构应该包含以下目录:

  • include :存放所有需要包含的头文件。
  • src :存放所有的源代码文件。
  • bin :存放编译生成的可执行文件。
  • lib :存放所需的库文件。

为方便管理,我们可以在项目根目录下创建批处理文件或脚本,简化编译和链接过程。例如,在Windows环境下,可以创建一个批处理文件 compile.bat ,包含编译指令:

@echo off
cl /EHsc /std:c++17 /I"%opencv_dir%\build\include" "%opencv_dir%\build\x64\vc15\lib\opencv_world456.lib" main.cpp

该脚本使用了 /I 参数来指定头文件路径, opencv_world456.lib 是一个包含了大多数OpenCV功能的单一库,简化了链接过程。

2.1.2 C++与OpenCV的交互方式

了解了环境配置与项目结构之后,我们将探索C++与OpenCV的交互方式。在OpenCV中,所有的图像处理功能都是以C++类的形式提供的。首先,需要包含相应的头文件,然后使用OpenCV命名空间。

#include <opencv2/opencv.hpp>
using namespace cv;

下面是一个简单示例,演示如何使用C++读取、处理并显示一张图像:

int main() {
    // 读取图像
    Mat image = imread("path_to_image.jpg");
    if (image.empty()) {
        std::cout << "Could not open or find the image" << std::endl;
        return -1;
    }

    // 对图像进行处理,这里以灰度化处理为例
    Mat grayImage;
    cvtColor(image, grayImage, COLOR_BGR2GRAY);

    // 显示处理后的图像
    namedWindow("Processed Image", WINDOW_AUTOSIZE);
    imshow("Processed Image", grayImage);

    // 等待按键操作,参数为毫秒
    waitKey(0);
    return 0;
}

上述代码展示了OpenCV中C++交互的基本模式:使用 imread 函数读取图像, cvtColor 函数进行图像颜色空间转换, namedWindow imshow 显示图像, waitKey 等待用户输入。我们通过这些函数与OpenCV库进行交互,利用OpenCV提供的丰富API执行各种图像处理任务。

在后续的章节中,我们将深入探讨更多使用C++在OpenCV进行项目开发的高级主题,包括但不限于实时视频处理、运动分析和3D重建等。

3. 计算机视觉技术核心原理与应用

3.1 计算机视觉技术介绍

计算机视觉是一门研究使计算机如何能从图像或视频中获取“感觉”的学科。这种“感觉”是指对这些图像或视频进行解释,以便能对它们进行自动处理、使用或解释。

3.1.1 计算机视觉的历史与发展

计算机视觉的发展可以追溯到20世纪50年代,但它真正开始受到关注是在1960年代,当时研究人员开始开发用于理解和解释数字图像的算法。随着计算能力的增强和算法的进步,计算机视觉逐步成为研究的热点,并在多个领域得到了应用。

早期计算机视觉技术主要依赖于手动设计的特征和规则。但随着机器学习技术的发展,尤其是深度学习的兴起,计算机视觉技术得到了巨大的推动。利用大量数据训练的神经网络模型,计算机视觉系统能够实现以往只有人类才能做到的任务。

3.1.2 计算机视觉的关键技术与算法

计算机视觉的关键技术包括但不限于图像分割、特征检测与描述、图像分类、物体检测与识别、场景重建、运动分析等。这些技术背后是多种复杂算法的支持,它们能够解决不同的视觉问题。

在图像分割中,算法将图像分割成多个部分或对象。特征检测与描述则关注于找出图像中的关键点,如角点、边缘等,并用描述符进行编码。图像分类是指将图像分配到不同的类别中,如猫、狗等。物体检测与识别不仅要分类,还要在图像中定位物体的位置。场景重建涉及从二维图像中重建三维场景结构。而运动分析则关注于追踪场景中的运动物体。

3.2 计算机视觉应用实例分析

3.2.1 面部识别与检测

面部识别与检测是计算机视觉中的一个热门领域,广泛应用于安全监控、智能设备解锁、广告分析等场景。面部识别技术通过提取面部关键点、面部轮廓或特征向量,并与数据库中存储的面部数据进行比较,以实现身份验证。

在应用面部检测时,系统首先需要检测出图像或视频流中的面部位置。一旦检测到面部,系统便可以进一步识别人脸的特征,如眼睛、鼻子、嘴巴等。深度学习方法,尤其是卷积神经网络(CNN),在此领域的应用非常广泛,因为它们能够从大量数据中学习到丰富的面部特征表示。

3.2.2 物体识别与跟踪技术

物体识别是计算机视觉中的另一个核心技术,它可以帮助计算机理解图像中的各种物体并进行分类。而物体跟踪则关注于在一系列连续的图像中识别并追踪特定物体的移动路径。

在物体识别中,深度学习模型通常用于提取图像中的特征,并将它们映射到特定的类别。而物体跟踪技术则需要模型能够处理时间序列数据,以预测物体在图像序列中的位置变化。常用的算法包括YOLO(You Only Look Once)、Faster R-CNN、SSD(Single Shot MultiBox Detector)等,它们在实时检测和跟踪任务中表现出色。

3.3 面部识别与检测的代码实现

下面我们将展示一个使用OpenCV进行面部识别的基础代码示例。此代码使用了OpenCV库中的Haar级联分类器来检测图像中的面部。

#include <opencv2/opencv.hpp>
#include <iostream>

int main(int argc, char** argv) {
    // 加载预训练的面部检测模型
    cv::CascadeClassifier face_cascade;
    if (!face_cascade.load("haarcascade_frontalface_default.xml")) {
        std::cout << "--(!)Error loading face cascade\n";
        return -1;
    }

    // 读取图像
    cv::Mat img = cv::imread("path_to_image.jpg");
    if (img.empty()) {
        std::cout << "--(!)Error loading image\n";
        return -1;
    }

    // 转换为灰度图
    cv::Mat gray;
    cvtColor(img, gray, cv::COLOR_BGR2GRAY);
    // 等待检测器进行处理
    std::vector<cv::Rect> faces;
    face_cascade.detectMultiScale(gray, faces);

    // 绘制检测到的面部矩形框
    for (size_t i = 0; i < faces.size(); i++) {
        cv::Point pt1(faces[i].x, faces[i].y);
        cv::Point pt2(faces[i].x + faces[i].height, faces[i].y + faces[i].width);
        cv::rectangle(img, pt1, pt2, cv::Scalar(0, 255, 0));
    }

    // 显示结果
    cv::imshow("Result", img);
    cv::waitKey(0);
    return 0;
}

在此代码中,首先加载了OpenCV预训练的Haar级联分类器模型,然后读取了一张图像。通过将图像转换为灰度图,并使用 detectMultiScale 函数,可以检测出图像中所有可能的面部位置,并存储在 faces 向量中。之后,使用 rectangle 函数在检测到的面部周围绘制矩形框,并使用 imshow 函数显示结果图像。

执行上述代码后,您将看到一张包含有绿色矩形框的图像,这些绿色矩形框标出了图像中检测到的面部区域。这个过程是计算机视觉中面部识别与检测的最基础实现,它展示了计算机如何通过学习和分析图像数据来理解和解释视觉世界。

4. 机器学习模块实践进阶

在过去的几年里,机器学习已经发展成为一个重要的研究和应用领域,不仅在理论界,而且在工业界都得到了广泛的关注。它通过使用算法来分析数据,让机器拥有学习和做出决策的能力。OpenCV库不断扩展,如今已经包含了机器学习模块,为处理图像和视频数据提供了丰富的功能。本章将深入探讨OpenCV的机器学习模块,包括支持向量机(SVM)和集成学习算法,如决策树和随机森林。

4.1 机器学习基础与OpenCV

4.1.1 机器学习简介与模型选择

机器学习是人工智能的一个分支,它使计算机能够学习和适应新的数据而不需明确编程。它的核心在于训练算法,使其能够根据历史数据进行预测或决策。机器学习算法主要分为三大类:监督学习、无监督学习和强化学习。在OpenCV中,我们主要关注的是监督学习,特别是在计算机视觉中常用的分类和回归问题。

选择合适的机器学习模型取决于多个因素,包括数据的类型和大小、特征的维度以及预测的准确性需求。在OpenCV中,常见的算法包括k-最近邻(k-NN)、支持向量机(SVM)、决策树和随机森林等。

4.1.2 OpenCV中SVM的实现与应用

SVM是一种强大的监督学习算法,用于分类和回归任务。它通过在特征空间中找到一个超平面来最大化不同类别之间的边界。OpenCV中的SVM实现提供了一系列参数来调整模型的行为,如选择不同的核函数以及调节C值等。

在OpenCV中使用SVM,首先需要导入相应的模块,然后用训练数据创建SVM对象并训练它。训练完成后,可以使用训练好的模型进行预测。下面的代码块展示了如何在OpenCV中实现SVM的基本流程。

#include <opencv2/opencv.hpp>
#include <opencv2/ml.hpp>

using namespace cv;
using namespace cv::ml;

// 假设我们已经有了训练数据和标签
Mat trainData = ...; // 训练数据矩阵,每一行代表一个样本
Mat labels = ...;    // 对应的标签矩阵

// 创建SVM对象
Ptr<SVM> svm = SVM::create();
svm->setType(SVM::C_SVC);
svm->setKernel(SVM::LINEAR);
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));

// 训练SVM模型
svm->train(trainData, ROW_SAMPLE, labels);

// 使用模型进行预测
Mat sample = ...; // 待预测的样本
Mat response;
svm->predict(sample, response);

cout << "Predicted class: " << response.at<float>(0,0) << endl;

在上述代码中,我们首先导入了OpenCV的机器学习模块,然后创建了SVM对象并设置了其类型和核函数。接着我们用训练数据来训练模型,并最终使用训练好的模型对新样本进行预测。每个参数的设置对模型性能和结果有直接的影响,因此在实际应用中需要仔细选择和调整这些参数。

4.2 决策树与随机森林

4.2.1 决策树原理与实践技巧

决策树是一种常见的分类和回归算法,它通过一系列的规则对数据进行划分。每个节点代表一个特征或属性,每个分支代表一个判断结果,最终的叶节点代表决策结果。OpenCV中的决策树提供了几种不同的剪枝方法,如预剪枝和后剪枝,以避免过拟合。

在实践中,决策树模型的构建涉及选择最好的特征进行分割。OpenCV中的决策树实现允许用户设置树的深度、最小样本数量、不纯度评估方法等参数。

4.2.2 随机森林的构建与调优

随机森林是一种集成学习方法,通过构建多个决策树来进行预测,每个决策树在数据的子集和特征的子集上训练,然后通过投票或平均的方式进行结果汇总。在OpenCV中,随机森林可以通过调整树的数量、特征数量、最小样本分割数量等参数来进行构建和调优。

随机森林的一个主要优势是能够有效地防止过拟合。在构建随机森林模型时,我们通常需要找到最优的树的数量以及每个树的节点分裂的最小样本数量。OpenCV提供了相关函数来帮助我们评估不同参数设置下的模型性能,从而找到最佳的调优方案。

// 假设我们已经有了训练数据和标签
Mat trainData = ...; // 训练数据矩阵
Mat labels = ...;    // 对应的标签矩阵

// 创建随机森林对象
Ptr<RTrees> rtrees = RTrees::create();
rtrees->setMaxDepth(10);
rtrees->setMinSampleCount(2);
rtrees->setRegressionAccuracy(0.f);
rtrees->setUseSurrogates(false);
rtrees->setMaxCategories(2);
rtrees->setPriors(Mat());
rtrees->setCalculateVarImportance(false);
rtrees->setActiveVarCount(0);
rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 0.01f));

// 训练随机森林模型
rtrees->train(trainData, ROW_SAMPLE, labels);

// 使用模型进行预测
Mat sample = ...; // 待预测的样本
Mat response;
rtrees->predict(sample, response);

cout << "Predicted response: " << response.at<float>(0,0) << endl;

在上面的代码示例中,我们创建了一个随机森林对象,并设置了其参数。通过训练函数,我们用训练数据训练模型,并使用训练好的模型进行预测。每一步都需要调整和优化,以获得最佳的模型性能。

在本章节中,我们重点介绍了机器学习在OpenCV中的实践,从基础的SVM模型到更为复杂的决策树和随机森林算法。每一种技术都有其特定的应用场景和优化策略。在实际应用中,理解每种算法的特点和适用条件,合理地选择和调整参数至关重要。通过本章的学习,您将能够更好地应用OpenCV中的机器学习模块来解决实际问题。

5. 深度学习模型集成与应用

深度学习作为计算机视觉领域的一项重要技术,其模型集成与应用已经深入到众多视觉任务的核心。在本章中,我们将深入探讨深度学习模型集成的概念、在计算机视觉中的作用,以及卷积神经网络(CNN)的基础知识。随后,我们将通过实际案例,演示如何在OpenCV中构建和训练CNN模型,并执行图像识别与分类任务。

5.1 深度学习模型集成概述

5.1.1 深度学习在计算机视觉中的角色

深度学习特别是卷积神经网络(CNN)在计算机视觉领域中扮演着重要角色。CNN能够自动从数据中学习有用的特征表示,这一特性使得它在视觉任务中表现出了卓越的性能,如图像分类、目标检测、语义分割等。

由于CNN可以构建复杂的非线性模型,它能够比传统机器学习算法更准确地处理图像数据。CNN模型的层级结构非常适合于处理像素级数据,其中卷积层能够有效提取局部特征,池化层有助于特征降维以及平移不变性,而全连接层则用于整合特征进行最终的决策。

5.1.2 卷积神经网络(CNN)基础

CNN模型由多个不同类型的层组成,包括卷积层、激活层、池化层、全连接层,以及归一化层等。每一层都有其特定的作用,通过层层组合,形成一个强大的特征提取器。

  • 卷积层 :通过卷积核滑动采样输入数据,提取局部特征。
  • 激活层 :通常使用非线性激活函数,如ReLU,将卷积操作后的结果引入非线性,增加网络的表达能力。
  • 池化层 :降低特征维度,提供一定的位置不变性。
  • 全连接层 :整合前面层的特征进行预测。
  • 归一化层 :如批量归一化(Batch Normalization),有助于稳定训练过程。

在构建CNN时,需要仔细选择模型的层数、神经元数量、过滤器大小和步长等参数。这些参数的选择会影响模型的性能,需要根据具体任务进行调整和优化。

5.2 CNN在OpenCV中的应用

5.2.1 CNN的构建与训练

OpenCV提供了一定程度的深度学习支持,使得在Python环境中使用OpenCV构建和训练CNN成为可能。虽然它可能不如专门的深度学习框架(如TensorFlow或PyTorch)强大,但在许多情况下足以满足应用需求。

构建一个简单的CNN模型,我们可以使用OpenCV中的 dnn 模块。该模块支持多种预训练模型,也可以加载自定义构建的模型进行前向传播。以下是使用OpenCV构建简单CNN模型的代码示例。

import cv2
import numpy as np

# 加载预训练模型(例如Caffe模型)
net = cv2.dnn.readNetFromCaffe('path_to_caffe_prototxt', 'path_to_caffe_model')

# 准备输入数据,通常需要经过预处理
# ...(此处添加数据预处理代码)

# 将数据输入网络进行前向传播
blob = cv2.dnn.blobFromImage(image, 1.0, (224, 224), (104, 117, 123))
net.setInput(blob)

# 运行前向传播并获取结果
output = net.forward()

# 处理输出结果...

在这个例子中,我们首先导入了 cv2 模块,然后加载了一个基于Caffe的预训练模型。 dnn.blobFromImage 用于处理输入图像,使其符合模型预期的格式。之后,我们将图像数据输入到网络中并执行前向传播,最后获取输出结果进行后续处理。

5.2.2 实际案例:图像识别与分类

在实际应用中,我们通常使用预训练模型来快速实现图像识别与分类。例如,可以使用OpenCV来加载一个在ImageNet上预训练的模型,然后使用该模型对新的图像数据进行分类。

为了演示这一过程,我们使用一个名为MobileNet的小型CNN模型,它在保持较高准确率的同时,模型大小和计算需求相对较小。

import cv2
import numpy as np

# 加载预训练的MobileNet模型
net = cv2.dnn.readNetFromCaffe('path_to_mobilenet_prototxt', 'path_to_mobilenet_caffemodel')

# 读取要分类的图片
image = cv2.imread('path_to_image')

# 对图片进行预处理,以满足网络输入需求
h, w = net.getUnconnectedOutLayers()[0].getshape()[2:4]
blob = cv2.dnn.blobFromImage(image, 1.0, (w, h), (104, 117, 123))

# 设置网络的输入并执行前向传播
net.setInput(blob)
output = net.forward()

# 输出类别概率,并找到概率最高的类别索引
output = output.reshape(1, 1000)
idx = np.argmax(output)

# 打印类别概率最高的类别
class_name = "unknown"
with open('path_to_imagenet_classes', 'r') as f:
    classes = [line.strip() for line in f.readlines()]
    class_name = classes[idx]
print('Classified as {}'.format(class_name))

在这段代码中,我们首先定义了输入图像的尺寸以匹配MobileNet模型的预期输入尺寸。然后,我们使用 dnn.blobFromImage 对图像进行了预处理,包括大小调整、均值减法等操作,以确保输入数据与模型训练时使用的数据一致。接着,我们执行网络的前向传播,并将输出概率最高的类别作为分类结果。

通过这种方式,我们可以快速实现一个高效且准确的图像分类系统,这在众多应用场景中都具有很高的实用价值,比如移动应用、嵌入式系统和在线服务等。通过OpenCV的 dnn 模块,即使是资源有限的环境也能实现深度学习模型的应用。

6. 图像处理与分析的实战技巧

图像处理与分析是计算机视觉领域的基础,无论是在学术研究还是工业应用中,都占有举足轻重的地位。本章将详细介绍图像处理技术的基础知识,并探讨一些高级图像处理的应用技巧。

6.1 图像处理技术简介

6.1.1 图像读取、显示和基本操作

在图像处理的初期,我们需要对图像进行读取、显示和执行一些基本操作。在OpenCV中,这些操作都非常简单。下面我们将学习如何使用OpenCV读取一张图片,并进行显示。

#include <opencv2/opencv.hpp>

int main() {
    // 读取图片
    cv::Mat image = cv::imread("path_to_image.jpg");
    // 显示图片
    if (!image.empty()) {
        cv::imshow("Display window", image);
        cv::waitKey(0); // 等待按键
    }

    return 0;
}

上述代码首先包含了OpenCV库,然后使用 cv::imread 函数读取了一张图片, cv::imshow 函数用于在窗口中显示这张图片, cv::waitKey(0) 使窗口等待用户按键后关闭。

6.1.2 图像转换、滤波与特征提取

图像转换、滤波与特征提取是图像处理中常见的一些操作。下面将介绍如何使用OpenCV进行图像转换和滤波处理。

// 将图像从BGR转换到灰度格式
cv::Mat grayImage;
cv::cvtColor(image, grayImage, cv::COLOR_BGR2GRAY);

// 使用均值滤波去除噪声
cv::Mat filteredImage;
cv::GaussianBlur(grayImage, filteredImage, cv::Size(5, 5), 0);

代码中, cv::cvtColor 函数用于颜色空间转换,这里将BGR颜色空间的图像转换成灰度图像。 cv::GaussianBlur 用于应用高斯滤波,它可以有效地去除图像中的高斯噪声。

6.2 高级图像处理应用

6.2.1 图像分割与轮廓检测

图像分割是将图像划分为多个部分或对象的过程,而轮廓检测则用于找到这些对象的边缘。下面展示了如何在OpenCV中实现图像分割与轮廓检测。

// 二值化处理
cv::Mat binaryImage;
cv::threshold(filteredImage, binaryImage, 127, 255, cv::THRESH_BINARY);

// 寻找轮廓
std::vector<std::vector<cv::Point>> contours;
cv::findContours(binaryImage, contours, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);

// 绘制轮廓
cv::Mat contoursImage = cv::Mat::zeros(binaryImage.size(), CV_8UC3);
cv::drawContours(contoursImage, contours, -1, cv::Scalar(0, 255, 0), 3);
cv::imshow("Contours", contoursImage);
cv::waitKey(0);

在上述代码中, cv::threshold 函数用于将图像进行二值化处理, cv::findContours 函数寻找二值图像中的轮廓, cv::drawContours 则用于在原图上绘制这些轮廓。

6.2.2 光流法与立体视觉技术

光流法和立体视觉技术是高级图像处理技术,它们用于估计视频序列中物体的运动模式或计算三维场景的深度信息。下面是一个使用OpenCV进行光流跟踪的简单示例。

// 使用LK光流法进行特征点跟踪
cv::Mat frame1, frame2;
cv::Mat grayFrame1, grayFrame2;
cv::Size subPixWinSize(10, 10), winSize(31, 31);

cv::VideoCapture capture("path_to_video.mp4");
capture >> frame1;
cv::cvtColor(frame1, grayFrame1, cv::COLOR_BGR2GRAY);
std::vector<cv::Point2f> corners;

// 在第一帧中选取一些特征点
corners.push_back(cv::Point2f(50, 50));
corners.push_back(cv::Point2f(100, 100));
corners.push_back(cv::Point2f(150, 150));

while (true) {
    capture >> frame2;
    if (frame2.empty()) break;
    cv::cvtColor(frame2, grayFrame2, cv::COLOR_BGR2GRAY);

    std::vector<cv::Point2f> next_corners;
    cv::calcOpticalFlowPyrLK(grayFrame1, grayFrame2, corners, next_corners, cv::Mat(), winSize, 3, subPixWinSize, cv::OPTFLOW_USE_INITIALFLOW);

    // 绘制跟踪结果
    for (int i = 0; i < next_corners.size(); i++) {
        cv::line(frame2, corners[i], next_corners[i], cv::Scalar(0, 255, 0), 2);
        corners[i] = next_corners[i];
    }
    cv::imshow("LK optical flow", frame2);
    cv::waitKey(30);
    grayFrame1 = grayFrame2.clone();
}

上述代码使用了Lucas-Kanade (LK) 光流法,这是计算机视觉中一种常用的运动估计方法。代码首先从视频中读取第一帧,并选取了几个特征点。然后,在每一帧中计算这些特征点的运动,并将结果绘制在视频帧上。

立体视觉技术涉及两个或多个相机同步拍摄同一场景,并结合几何计算得到深度信息。它在自动驾驶、机器人导航等领域有着重要的应用。

在本章中,我们探讨了图像处理技术的基础与实战技巧,包括图像的读取、显示、基本操作、转换、滤波、特征提取,以及高级图像处理技术如图像分割、轮廓检测、光流法和立体视觉技术。这些技术在计算机视觉的多个应用中至关重要。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:OpenCV是一个功能强大的计算机视觉和人工智能库,"LearnOpencv"项目提供了一个包含C++和Python示例的学习资源库。它适合初学者和经验丰富的开发者,介绍了图像处理、特征检测、对象识别等技术,并展示了如何使用OpenCV的机器学习模块进行分类器训练,以及如何部署深度学习模型进行图像分类和目标检测。此外,还包含了从基础到高级操作的博客文章和示例代码,以便于快速理解OpenCV的应用,并建立计算机视觉和AI领域的坚实基础。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值