详细介绍Conformer模型结构

Conformer是OpenAI提出的一种融合Transformer和CNN的深度学习模型,设计用于增强文本中的长期依赖性捕获。它的混合架构提供了更高的计算效率和更小的模型大小,优化了机器阅读理解与语言生成任务的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Conformer模型是由OpenAI发明的一种语言模型,它使用Attention机制来构建一个新的深度神经网络架构,可以更好地捕捉文本中的长期依赖关系。它结合了Transformer模型和CNN模型的优点,采用混合架构,它具有更高的计算效率和较低的模型大小。它将通过更优秀的计算性能,更强大的语言建模能力以及更紧密的语义表示来改进机器阅读理解和语言生成任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值