ASR Conformer模型论文及代码分析

0. 前言

Conformer是Google在2020年提出的语音识别模型,基于Transformer改进而来,主要的改进点在于Transformer在提取长序列依赖的时候更有效,而卷积则擅长提取局部特征,因此将卷积应用于Transformer的Encoder层,同时提升模型在长期序列和局部特征上的效果,实际证明,该方法确实有效,在当时的LibriSpeech测试集上取得了最好的效果。

Wenet是出门问问语音团队联合西工大语音实验室开源的一款面向工业落地应用的语音识别工具包,该工具用一套简洁的方案提供了语音识别从训练到部署的一条龙服务,Wenet目前在github上获得了上千个stars,其易用性深受用户好评。

本文将首先分析Conformer的原始论文,然后基于Wenet框架分析工程代码实现。

1. Conformer模型

Conformer模型在输入的时候,首先通过一个卷积网络进行下采样,然后接上一系列的conformer模块,基本结构如下:

Conformer encoder model architecture

其中,conformer模块包含以下几个部分:Feedforward module,Multi-head self attention Module和Convolution Module共三个模块组成,注意其中两个Feedforward输出都乘以了1/2。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
由于没有给出具体的conformer代码,这里给出一个可能的conformer代码解释: Conformer通常是指构象的分子模型,可以通过计算机模拟得到。在化学领域中,conformer常常用于描述分子的构象变化,因为分子的构象变化会影响其化学性质和反应性质。 下面是一个可能的conformer代码的解释: 1. 导入必要的库 ```python import numpy as np import torch import torch.nn as nn import torch.nn.functional as F ``` 这段代码导入了numpy、torch和torch.nn等必要的库,以便之后的计算和模型构建。 2. 定义ConformerEncoder层 ```python class ConformerEncoder(nn.Module): def __init__(self, d_model, n_heads, ff_dim, conv_expansion_factor, conv_kernel_size, attn_dropout_rate, ff_dropout_rate): super(ConformerEncoder, self).__init__() self.multihead_attn = nn.MultiheadAttention(d_model=d_model, n_heads=n_heads, dropout=attn_dropout_rate) self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_model*conv_expansion_factor, kernel_size=conv_kernel_size, padding=(conv_kernel_size-1)//2) self.conv2 = nn.Conv1d(in_channels=d_model*conv_expansion_factor, out_channels=d_model, kernel_size=conv_kernel_size, padding=(conv_kernel_size-1)//2) self.layer_norm1 = nn.LayerNorm(d_model) self.layer_norm2 = nn.LayerNorm(d_model) self.feedforward = nn.Sequential(nn.Linear(d_model, ff_dim), nn.ReLU(), nn.Dropout(ff_dropout_rate), nn.Linear(ff_dim, d_model)) self.dropout = nn.Dropout(ff_dropout_rate) def forward(self, x, mask=None): residual = x x, _ = self.multihead_attn(x, x, x, attn_mask=mask) x = self.layer_norm1(x + residual) residual = x x = x.permute(0, 2, 1) x = self.conv1(x) x = self.conv2(x) x = x.permute(0, 2, 1) x = self.layer_norm2(x + residual) residual = x x = self.feedforward(x) x = self.dropout(x) x = self.layer_norm3(x + residual) return x ``` 这段代码定义了一个ConformerEncoder层,包括多头注意力、卷积、残差连接、层归一化和前馈网络等。 其中,多头注意力使用了nn.MultiheadAttention函数,卷积使用了nn.Conv1d函数,残差连接和层归一化使用了nn.LayerNorm函数,前馈网络使用了nn.Linear和nn.ReLU函数。 3. 定义Conformer模型 ```python class Conformer(nn.Module): def __init__(self, n_classes, input_dim=40, d_model=144, n_heads=4, ff_dim=256, conv_expansion_factor=2, conv_kernel_size=31, dropout_rate=0.1): super(Conformer, self).__init__() self.conv = nn.Conv1d(in_channels=input_dim, out_channels=d_model, kernel_size=3, padding=1) self.bn = nn.BatchNorm1d(d_model) self.transformer_blocks = nn.ModuleList([ConformerEncoder(d_model=d_model, n_heads=n_heads, ff_dim=ff_dim, conv_expansion_factor=conv_expansion_factor, conv_kernel_size=conv_kernel_size, attn_dropout_rate=dropout_rate, ff_dropout_rate=dropout_rate) for _ in range(4)]) self.pooling = nn.AdaptiveAvgPool1d(1) self.classifier = nn.Linear(d_model, n_classes) self.dropout = nn.Dropout(dropout_rate) def forward(self, x): x = self.conv(x) x = self.bn(x) x = x.permute(0, 2, 1) for transformer_block in self.transformer_blocks: x = transformer_block(x) x = self.pooling(x).squeeze(-1) x = self.dropout(x) x = self.classifier(x) return x ``` 这段代码定义了一个Conformer模型,包括卷积、批归一化、ConformerEncoder层、自适应平均池化、线性分类器和dropout等。 其中,卷积使用了nn.Conv1d函数,批归一化使用了nn.BatchNorm1d函数,自适应平均池化使用了nn.AdaptiveAvgPool1d函数,线性分类器使用了nn.Linear函数,dropout使用了nn.Dropout函数。 4. 总结 这个可能的conformer代码实现了一个基本的Conformer模型,其中包括卷积、批归一化、ConformerEncoder层、自适应平均池化、线性分类器和dropout等。该模型可以用于语音识别等任务中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值