Conformer:用于语音识别的卷积增强Transformer

        Transformer模型善于捕捉基于内容的全局交互,而cnn则能有效地利用局部特征。在这项工作中,通过研究如何将卷积神经网络和Transformer结合起来,以参数有效的方式对音频序列的局部和全局依赖关系进行建模,从而达到两全面性。

        为此,提出了用于语音识别的卷积增强Transformer,命名为Conformer。Conformer显著优于之前的Transformer和基于CNN的模型,达到了最先进的精度。

1. 引言

        基于神经网络的端到端自动语音识别(ASR)系统近年来取得了很大的进步。递归神经网络(RNN)已经成为ASR的实际选择,因为它们可以有效地模拟音频序列中的时间依赖性。最近,基于自关注的Transformer体系结构由于能够捕获长距离交互和高训练效率,在序列建模中得到了广泛的采用。另外,卷积在ASR中也取得了成功,它通过一层一层的局部接受场逐步捕获局部上下文。

        然而,具有自注意力或卷积的模型都有其局限性。虽然Transformer擅长对远程全局上下文进行建模,但它们在提取细粒度的局部特征模式方面能力较差。另一方面,卷积神经网络(CNN)利用局部信息,在视觉中被用作事实上的计算块。它们在一个局部窗口上学习共享的基于位置的核,这些核保持平移等变性,并能够捕获边缘和形状等特征。使用局部连接的一个限制是,需要更多的层或参数来捕获全局信息。为了解决这个问题,当代作品ContextNet[10]在每个残差块中采用挤压激励模块来捕获更长的上下文。然而,它在捕获动态全局上下文方面仍然有限,因为它只在整个序列上应用全局平均。

1.1 多分支架构

        一种多分支架构,将输入分为两个分支:自注意力和卷积;并将它们的输出连接起来。工作目标是移动应用程序,并显示了机器翻译任务的改进。研究了如何将卷积和自注意有机地结合在ASR模型中。假设全局和局部相互作用对于参数效率都很重要。为了实现这一点,提出了一种新颖的自注意和卷积的组合,将实现两全其美——自注意学习全局交互,而卷积有效地捕获基于相对偏移量的局部相关性。受Wu等人[17,18]的启发,引入了一种新颖的自注意力和卷积的组合,夹在一对前馈模块之间,如图1所示。

2. Conformer Encoder

        音频编码器首先用卷积子采样层处理输入,然后用一些共形块处理输入,如图1所示。模型的显著特征是使用Conformer块代替Transformer块

以下是在PyTorch中实现Conformer模型的示例代码: ```python import torch import torch.nn as nn import torch.nn.functional as F class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super(ConvBlock, self).__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding=(kernel_size - 1) // 2) self.bn = nn.BatchNorm1d(out_channels) self.activation = nn.ReLU() def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.activation(x) return x class DepthWiseConvBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super(DepthWiseConvBlock, self).__init__() self.depthwise_conv = nn.Conv1d(in_channels, in_channels, kernel_size, stride, padding=(kernel_size - 1) // 2, groups=in_channels) self.pointwise_conv = nn.Conv1d(in_channels, out_channels, 1, 1) self.bn = nn.BatchNorm1d(out_channels) self.activation = nn.ReLU() def forward(self, x): x = self.depthwise_conv(x) x = self.pointwise_conv(x) x = self.bn(x) x = self.activation(x) return x class MultiHeadedSelfAttention(nn.Module): def __init__(self, num_heads, model_dim, dropout_rate=0.1): super(MultiHeadedSelfAttention, self).__init__() self.num_heads = num_heads self.model_dim = model_dim self.dropout_rate = dropout_rate self.head_dim = model_dim // num_heads self.query_projection = nn.Linear(model_dim, model_dim) self.key_projection = nn.Linear(model_dim, model_dim) self.value_projection = nn.Linear(model_dim, model_dim) self.dropout = nn.Dropout(dropout_rate) self.output_projection = nn.Linear(model_dim, model_dim) def forward(self, x): batch_size, seq_len, model_dim = x.size() query = self.query_projection(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) key = self.key_projection(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) value = self.value_projection(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) attention_scores = torch.matmul(query, key.transpose(-2, -1)) attention_scores = attention_scores / self.head_dim ** 0.5 attention_probs = F.softmax(attention_scores, dim=-1) context_vectors = torch.matmul(self.dropout(attention_probs), value).transpose(1, 2).contiguous().view(batch_size, seq_len, model_dim) output = self.output_projection(context_vectors) return output class ConformerBlock(nn.Module): def __init__(self, model_dim, num_heads, feedforward_dim, dropout_rate=0.1): super(ConformerBlock, self).__init__() self.model_dim = model_dim self.num_heads = num_heads self.feedforward_dim = feedforward_dim self.dropout_rate = dropout_rate self.layer_norm_1 = nn.LayerNorm(model_dim) self.attention = MultiHeadedSelfAttention(num_heads=num_heads, model_dim=model_dim, dropout_rate=dropout_rate) self.dropout_1 = nn.Dropout(dropout_rate) self.layer_norm_2 = nn.LayerNorm(model_dim) self.convolution_1 = ConvBlock(in_channels=model_dim, out_channels=feedforward_dim, kernel_size=1, stride=1) self.convolution_2 = DepthWiseConvBlock(in_channels=feedforward_dim, out_channels=model_dim, kernel_size=3, stride=1) self.dropout_2 = nn.Dropout(dropout_rate) def forward(self, x): residual = x x = self.layer_norm_1(x) x = x + self.dropout_1(self.attention(x)) x = self.layer_norm_2(x) x = x + self.dropout_2(self.convolution_2(self.convolution_1(x))) return x + residual class Conformer(nn.Module): def __init__(self, num_layers, model_dim, num_heads, feedforward_dim, num_classes, dropout_rate=0.1): super(Conformer, self).__init__() self.num_layers = num_layers self.model_dim = model_dim self.num_heads = num_heads self.feedforward_dim = feedforward_dim self.num_classes = num_classes self.dropout_rate = dropout_rate self.convolution = ConvBlock(in_channels=1, out_channels=model_dim, kernel_size=3, stride=1) self.blocks = nn.ModuleList([ConformerBlock(model_dim=model_dim, num_heads=num_heads, feedforward_dim=feedforward_dim, dropout_rate=dropout_rate) for _ in range(num_layers)]) self.layer_norm = nn.LayerNorm(model_dim) self.fc = nn.Linear(model_dim, num_classes) def forward(self, x): x = self.convolution(x) for block in self.blocks: x = block(x) x = self.layer_norm(x) x = x.mean(dim=1) x = self.fc(x) return x ``` 这段代码实现了一个包含多个Conformer block的Conformer模型,可以用于分类任务。在这个例子中,我们使用1D卷积来处理输入序列,然后通过多个Conformer block来提取特征并进行分类。在每个Conformer block中,我们使用self-attention和多层卷积操作来对输入序列进行处理。最后,我们使用全连接层将Conformer block的输出映射到分类结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值