随机森林信息熵python代码_机器学习--决策树、随机森林讲解(算法+案例)

本文介绍了决策树的基本原理,包括从逻辑回归到决策树的转变,决策树的成长过程,以及ID3、C4.5、CART三种算法的区别。接着详细阐述了随机森林的概念,解释了其利用Bagging思想提高模型稳定性和准确性的方法,并分析了随机森林的优缺点。最后,提供了决策树和随机森林的Python代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

寻找互联网,少有机器学习浅显易懂之算法讲解、案例等,项目立于这一问题之上,整理一份基本算法讲解+案例于文档,供大家学习之。浅显易懂之文章亦不可以面概全,凡是有不正确或者争议之处,望告知,自当不吝赐教!

GitHub地址(代码加数据)

1.决策树

1.1从LR到决策树

相信大家都做过用LR来进行分类,总结一下LR模型的优缺点:

优点适合需要得到一个分类概率的场景。

实现效率较高。

很好解决线性特征。

缺点当特征空间很大时,逻辑回归的性能不是很好。

不能很好地解决大量多类特征。

对于非线性特征,需要进行转换。

以上就是LR模型的优缺点,没错,决策树的出现就是为理解决LR模型不足的地方,这也是我们为什么要学习决策树的起因了,没有任何一个模型是万能的。

决策树的优点模拟人的直观决策规则。

可以解决非线性特征。

考虑了特征之间的相互作用。

其实用一下图片能更好的了解LR模型和决策树模型算法的根本区别,我们可以思考一下一个决策问题:能否去相亲,一个女孩的母亲要给这个女海详情对象。

image

大家都看得很明白了吧!LR模型是一股脑儿的把所有特征塞入学习,而决策树更像是编程语言中的if-else一样,去做条件判断,这就是根本性的区别。

1.2“树”的成长过程

决策树基于“树”结构进行决策的,这时我们就要面临两个问题 :“树”怎样长。

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值