决策树:
决策树是一种树形结构,树内部每个节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶子节点代表一个分类类别。通过训练数据构建决策树,可以对未知数据进行分类,
上面的决策树深度depth为3
使用鸢尾花数据
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data[:,2:]
y = iris.target
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.scatter(X[y==2,0],X[y==2,1])
plt.show()
# 绘制边界
def plot_decision_boundary(model,axis):
x0,x1 = np.meshgrid(
np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)),
np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100))
)
x_new = np.c_[x0.ravel(),x1.ravel()]
y_predict = model.predict(x_new)
zz = y_predict.reshape(x0.shape)
from matplotlib.colors import ListedColormap
custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
plt.contourf(x0,x1,zz,cmap=custom_cmap)
使用sklearn中决策树 使用信息熵
from sklearn.tree import DecisionTreeClassifier
dt_clf = DecisionTreeClassifier(max_depth=2, criterion='entropy')
dt_clf.fit(X,y)
plot_decision_boundary(dt_clf, axis=[0.5,7.5,0,3])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.scatter(X[y==2,0],X[y==2,1])
plt.show()
问题:怎么构建决策树?每个节点在哪个维度做划分?我们的数据可能有成百上千个维度。
某个维度在哪个值上做划分呢?
我们可以用信息熵来处理
信息熵
熵在信息论中代表: 随机变量不确定度的度量
熵越大,数据的不确定性越高
熵越小,数据的不确定性越低
信息熵的计算公式:
H = − ∑ i = 1 k p i l o g ( p i ) H = - \sum_{i=1}^k p_i log(p_i) H=−i=1∑kpilog(pi)
p i p_i pi