随机森林算法对输入数据有一些要求,包括以下几点:
特征选择:随机森林算法需要选择一些特征作为输入,因此输入数据需要包含能够描述问题的特征。同时,由于随机森林算法中的随机性,通常选择所有特征的一个子集进行建模,因此输入数据中的特征应该足够多,避免在特征选择过程中丢失重要信息。
特征编码:输入数据中的特征需要被编码成数字或数值形式,以便计算特征之间的距离或相似度。例如,类别型特征需要进行独热编码或者序号编码,数值型特征需要进行标准化或者归一化。
数据平衡:随机森林算法对数据平衡性较为敏感,输入数据应该尽量保持类别之间的平衡。当数据不平衡时,可以考虑使用一些采样技术,如欠采样