数学表达式魔训day3

本文介绍了如何使用Java进行累加、矩阵中小于1的分量平方累加以及二重积分的计算。通过具体代码示例展示了向量偶数下标分量累加、累乘、定积分的计算过程,并给出了相应的数学表达式。此外,还探讨了三重累加在矩阵运算中的应用,以及最小二乘法的验证例子。
摘要由CSDN通过智能技术生成

累加:
1. ∑ x i > 0 x i 2 \sum_{x_i>0}x_i^2 xi>0xi2的 Java 代码怎么写?

double sum=0;
for(int i=0;i<n;i++)
{
	if(x[i]>0)
		sum+=x[i]*x[i];
}

2.将矩阵中小于 1 的分量平方并累加, 数学表达式如何和 Java 代码分别怎么写?

double sum=0;
for(i=0;i<n;i++)
{
	for(j=0;j<m;j++)
	{
		if(x[i][j]<1)
			sum+=x[i][j]*x[i][j];
	}
}

定积分:
二重积分 ∫ 0 10 ∫ y 2 y 2 x 2 y + y 2 d x d y \int_0^{10}\int_{\frac y 2}^y 2x^2y+y^2\mathrm{d}x\mathrm{d}y 0102yy2x2y+y2dxdy
java代码:

double integration = 0;
double deltax = 0.01;
double deltay = 0.01;
for (double y = 0; y <= 10; y += delta)
	for (double x = y/2; x <= y; x += delta)
		integeration += (2 * x * x * y + y * y) * deltax * deltay;

作业:

1.将向量下标为偶数的分量 ( x 2 , x 4 , …   ) (x_2,x_4,\dots) (x2,x4,) 累加, 写出相应表达式.

答: ∑ i m o d      2 = 0 n x i = ∑ i = 1 ⌊ n 2 ⌋ x 2 i \sum\limits_{i \mod \ 2 =0}^{n}x_{i}=\sum\limits_{i=1}^{\lfloor{\frac n 2}\rfloor}x_{2i} imod 2=0nxi=i=12nx2i
java代码:

double sum=0;
for(int i=1;i<=n;i++)
{
	if(i%2==0)
		sum+=x[i];
}

2.各出一道累加、累乘、积分表达式的习题, 并给出标准答案.

答: x = ( 1 , 8 , 4 , 2 , 5 ) \mathbf{x}=(1,8,4,2,5) x=(1,8,4,2,5)
累加: ∑ i = 1 n x i = 1 + 8 + 4 + 2 + 5 = 20 \sum\limits_{i=1}^{n}x_{i}=1+8+4+2+5=20 i=1nxi=1+8+4+2+5=20
累乘: ∏ i = 1 n x i = 1 × 8 × 4 × 2 × 5 = 320 \prod\limits_{i=1}^{n}x_{i}=1\times 8\times 4\times 2\times 5=320 i=1nxi=1×8×4×2×5=320

定积分: ∫ 2 16 ∫ y + 4 3 y ( 4 x y + y 2 x + 2 x + y ) d x d y \int_2^{16}\int_{y+4}^{3y} (4xy+y^2x+2x+y)\mathrm{d}x\mathrm{d}y 216y+43y(4xy+y2x+2x+y)dxdy

double integration = 0;
double deltax = 0.01;
double deltay = 0.01;
for (int y = 2; y <= 16; y += delta)
	for (int x = y+4; x <= 3y; x += delta)
		integeration += (4 * x * y  + y * y*x+2*x+y) * deltax * deltay;

3.你使用过三重累加吗? 描述一下其应用.

答:三重累加应该可以用在多个矩阵与权重矩阵相乘再累加的时候。也可以说当多个矩阵累加时便可以用三重矩阵。
∑ i = 1 n ∑ j = 1 m x i j \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}x_{ij} i=1nj=1mxij这个算式计算 n × m n\times m n×m阶矩阵各元素之和,是一个二重累加。若有k个矩阵, X 1 , X 2 , … , X k \mathbf{X_1},\mathbf{X_2},\dots,\mathbf{X_k} X1,X2,,Xk且都是 n × m n\times m n×m阶矩阵,则计算所有矩阵元素之和则可以用三重累加。

4.给一个常用的定积分, 将手算结果与程序结果对比.

答: ∫ 3 6 ∫ 2 x 4 x 2 y d y d x \int_3^{6}\int_{2x}^{4x} 2y\mathrm{d}y\mathrm{d}x 362x4x2ydydx

double integration = 0;
			double deltax = 0.001;
			double deltay = 0.001;
			for (double x = 3; x <= 6; x += deltax)
				for (double y = 2*x; y <= 4*x; y+= deltay)
					integration += (2*y) * deltax * deltay;

手算结果为:756.
∫ 3 6 ∫ 2 x 4 x 2 y d y d x = ∫ 3 6 12 x 2 d x = 4 x 3 ∣ 3 6 = 756 \int_3^{6}\int_{2x}^{4x} 2y\mathrm{d}y\mathrm{d}x=\int_3^{6}12x^2\mathrm{d}x=4x^3|_3^6=756 362x4x2ydydx=3612x2dx=4x336=756
当 deltax = 0.001,deltay = 0.001时,程序计算结果为:755.87.
在这里插入图片描述

5.自己写一个小例子 ( n = 3 , m = 1 ) (n=3,m=1) (n=3,m=1) 来验证最小二乘法.

答:取 X = [ 5 , 16 , 24 ] \mathbf{X}=[5,16,24] X=[5,16,24], Y = [ 4 , 17 , 24 ] \mathbf{Y}=[4,17,24] Y=[4,17,24]
y = a 0 + a 1 × x y=a_0+a_1\times x y=a0+a1×x
误差: ∑ i = j = 1 3 ( Y i − Y j ) 2 = ( 4 − a 0 − 5 a 1 ) 2 + ( 17 − a 0 − 5 a 1 ) 2 + ( 24 − a 0 − 24 a 1 ) \sum \limits_{i=j=1}^{3}(\mathbf{Y}_i-\mathbf{Y}_j)^2=(4-a_0-5a_1)^2+(17-a_0-5a_1)^2+(24-a_0-24a_1) i=j=13(YiYj)2=(4a05a1)2+(17a05a1)2+(24a024a1)
d d a 0 ∑ i = j = 1 3 ( Y i − Y j ) 2 = ⋯ = 0 \frac d {da_0}\sum \limits_{i=j=1}^{3}(\mathbf{Y}_i-\mathbf{Y}_j)^2=\dots=0 da0di=j=13(YiYj)2==0,得   3 a 0 + 45 a 1 = 45 \ 3a_0+45a_1=45  3a0+45a1=45 (式1)
d d a 1 ∑ i = j = 1 3 ( Y i − Y j ) 2 = ⋯ = 0 \frac d {da_1}\sum \limits_{i=j=1}^{3}(\mathbf{Y}_i-\mathbf{Y}_j)^2=\dots=0 da1di=j=13(YiYj)2==0,得   45 a 0 + 857 a 1 = 868 \ 45a_0+857a_1=868  45a0+857a1=868(式2)
由式1和式2得 a 0 = − 0.91 , a 1 = 1.06 a_0=-0.91,a_1=1.06 a0=0.91,a1=1.06
所以得出线性关系为: y = 1.06 x − 0.91 y=1.06x-0.91 y=1.06x0.91

6.自己推导一遍, 并描述这个方法的特点 (不少于 5 条).

答:自变量与超平面间的距离转化为概率   P ( y i ∣ x i ; w ) = 1 1 + e − x w \ P(y_i|x_i;\mathbf{w})=\frac 1 {1+e^{-\mathbf{xw}}}  P(yixi;w)=1+exw1.
统一 y i y_i yi得到     P ( y i ∣ x i ; w ) = P ( y i = 1 ∣ x i ; w ) y i ( 1 − P ( y i = 1 ∣ x i ; w ) ) 1 − y i \ \ \ P(y_i|x_i;\mathbf{w})=P(y_i=1|x_i;\mathbf{w})^{y_i}(1-P(y_i=1|x_i;\mathbf{w}))^{1-y_i}    P(yixi;w)=P(yi=1xi;w)yi(1P(yi=1xi;w))1yi .
针对全部对象进行优化, 可将相应的概率相乘 (最大似然, maximal likelihood): arg ⁡ max ⁡ L ( w ) = ∏ i = 1 n P ( y i ∣ x i ; w ) \arg \max L(\mathbf{w}) =\prod\limits_{i=1}^{n}P(y_i|x_i;\mathbf{w}) argmaxL(w)=i=1nP(yixi;w)
取对数方便计算,不改变单调性:
log ⁡ L ( w ) = ∑ i = 1 n log ⁡ P ( y i ∣ x i ; w ) \log L(\mathbf{w})=\sum\limits_{i=1}^{n}\log P(y_i|x_i;\mathbf{w}) logL(w)=i=1nlogP(yixi;w)
= ∑ i = 1 n y i log ⁡ P ( y i = 1 ∣ x i ; w ) + ( 1 − y i ) log ⁡ ( 1 − P ( y i = 1 ∣ x i ; w ) ) =\sum\limits_{i=1}^{n}y_i\log P(y_i=1|x_i;\mathbf{w})+(1-y_i)\log (1-P(y_i=1|x_i;\mathbf{w})) =i=1nyilogP(yi=1xi;w)+(1yi)log(1P(yi=1xi;w))
= ∑ i = 1 n y i log ⁡ P ( y i = 1 ∣ x i ; w ) 1 − P ( y i = 1 ∣ x i ; w ) + log ⁡ ( 1 − P ( y i = 1 ∣ x i ; w ) ) =\sum\limits_{i=1}^{n}y_i\log \frac {P(y_i=1|x_i;\mathbf{w})} {1-P(y_i=1|x_i;\mathbf{w})}+\log (1-P(y_i=1|x_i;\mathbf{w})) =i=1nyilog1P(yi=1xi;w)P(yi=1xi;w)+log(1P(yi=1xi;w))
= ∑ i = 1 n y i x i w − log ⁡ ( 1 + e x i w ) =\sum\limits_{i=1}^{n}y_i \mathbf{x}_i \mathbf{w}-\log (1+ e^{\mathbf{x}_i \mathbf{w}}) =i=1nyixiwlog(1+exiw)
w \mathbf{w} w求偏导
log ⁡ L ( w ) ∂ w = ∑ i = 1 n y i x i − e x i w 1 + x i w x i \frac{\log L(\mathbf{w})} {\partial \mathbf{w}}=\sum\limits_{i=1}^{n}y_i\mathbf{x}_i-\frac{e^{\mathbf{x}_i\mathbf{w}}}{1+\mathbf{x}_i\mathbf{w}}\mathbf{x}_i wlogL(w)=i=1nyixi1+xiwexiwxi
= ∑ i = 1 n ( y i − e x i w 1 + x i w ) x i =\sum\limits_{i=1}^{n} \left (y_i-\frac{e^{\mathbf{x}_i\mathbf{w}}}{1+\mathbf{x}_i\mathbf{w}} \right) \mathbf{x}_i =i=1n(yi1+xiwexiw)xi
用梯度下降求解
w t + 1 = w t − α log ⁡ L ( w ) ∂ w \mathbf{w}^{t+1}=\mathbf{w}^t-\alpha \frac{\log L(\mathbf{w})} {\partial \mathbf{w}} wt+1=wtαwlogL(w)
特点:

  • 在 m 维空间上,m维向量 w \mathbf{w} w确定了一条直线. 为方便起见, 令 w \mathbf{w} w 为列向量. 点 x \mathbf{x} x w \mathbf{w} w 的距离为 x w \mathbf{x}\mathbf{w} xw.
  • logistic回归的因变量可以是二分类的,也可以是多分类的.
  • 如果正确分类, 则离超平面越远越好; 如果错误分类, 则离超平面越近越好.
  • 使用 sigmoid 函数(常用)将自变量到超平面的距离转成 (我们以为的) 概率.
  • 概率     P ( y i ∣ x i ; w ) = P ( y i = 1 ∣ x i ; w ) y i ( 1 − P ( y i = 1 ∣ x i ; w ) ) 1 − y i \ \ \ P(y_i|x_i;\mathbf{w})=P(y_i=1|x_i;\mathbf{w})^{y_i}(1-P(y_i=1|x_i;\mathbf{w}))^{1-y_i}    P(yixi;w)=P(yi=1xi;w)yi(1P(yi=1xi;w))1yi y i = 1 y_i=1 yi=1 y i = 0 y_i=0 yi=0都包含到式子.
  • w \mathbf{w} w求偏导,令其为0,无法获得解析式,所以用梯度下降法求.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值