yolov5与yolov7的区别

Yolov5和Yolov7是目标检测领域中常用的两种算法模型,它们的主要区别在于网络架构和性能表现。

Yolov5是一种轻量级的目标检测模型,采用的是基于FPN(Feature Pyramid Networks)的骨干网络结构,以及使用anchor-free的检测方式,减少了模型计算量和参数数量。相比于Yolov4,Yolov5在速度和精度方面都有显著提升,达到了较好的性能表现。

Yolov7则是一种新的目标检测模型,相比于Yolov5,它采用了更深的网络结构,并且引入了一些新的技术手段,如Bottleneck Attention Module(BAM)等,从而在精度方面有了进一步提升。同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值