何伟强的改进图像素描生成算法详解

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:何伟强提出了改进的图像素描生成算法,该算法通过梯度处理、反相处理和灰度化步骤,将彩色或灰度图像转化为具有手绘素描效果的图像。算法优化了真实感和效率,简化了处理复杂性,并可能采用了特定的滤波器和线条渲染技术。通过阅读何伟强的文档,学习者可以深入了解算法的理论和实现,以提高数字图像处理技能。 一种改进的图像素描生成算法_何伟强_素描_数字图像处理_

1. 图像素描生成算法的概述

在当今数字化时代,图像处理技术已经广泛渗透到我们的工作和生活中。其中,图像素描生成算法是图像处理领域的一项重要技术,它能够将彩色或灰度图像转换成具有素描风格的艺术作品。本章旨在为读者提供一个关于图像素描生成算法的基础概述,阐述算法的工作原理、应用范围,以及其在视觉艺术和设计中的独特价值。

算法的起源与发展

图像素描生成算法的灵感通常来源于传统美术,特别是素描艺术。艺术家利用铅笔、炭笔在纸上绘制出富有表现力的线条和阴影,创造出具有丰富层次感的图像。计算机算法模仿这一过程,通过数学模型和图像处理技术,将数字化的图像转换成类似素描的视觉表现形式。随着计算机图形学的发展,这一算法不断演进,融入了更多先进的图像处理技术,如边缘检测、色彩变换和图像滤波等。

算法的应用价值

图像素描生成算法不仅在艺术创作中有广泛应用,还被用于产品设计、视觉效果增强和图像编辑等领域。它使得非专业艺术家也能够轻松地将照片转换成具有艺术家风格的素描作品,为创意表达提供了新的途径。此外,这一算法还能帮助人们更直观地理解和分析图像内容,例如,在医学成像和地形分析中,素描风格的图像可以突出显示关键特征,便于专业人士进行诊断和研究。

算法的未来展望

随着机器学习和人工智能技术的不断进步,未来的图像素描生成算法有望实现更高的自动化和个性化。算法将能够更准确地识别图像内容,并根据用户的偏好和创意意图,生成独一无二的艺术效果。此外,随着计算能力的提升,算法处理速度和质量都将得到显著提升,进一步推动这一技术在多媒体娱乐、在线教育和虚拟现实等新兴领域中的应用。

2. 梯度处理的原理及其在算法中的作用

2.1 梯度处理基础理论

2.1.1 梯度定义及其数学模型

在图像处理中,梯度(Gradient)是向量算子,用于测量图像亮度变化的速度和方向。数学上,梯度可以表示为一个向量场,其每个元素是多变量函数在某一点的方向导数。对于数字图像而言,梯度可以用来检测边缘,即图像中亮度变化剧烈的地方。

对于二维函数 ( f(x, y) ),其梯度可以表示为一个向量:

[ \nabla f(x, y) = \begin{bmatrix} \frac{\partial f}{\partial x} \ \frac{\partial f}{\partial y} \end{bmatrix} ]

这里的 ( \frac{\partial f}{\partial x} ) 和 ( \frac{\partial f}{\partial y} ) 分别是函数在 ( x ) 和 ( y ) 方向上的偏导数。

2.1.2 图像梯度的计算方法

实际中,图像的梯度通常通过离散的形式计算,常见的方式有Sobel算子、Prewitt算子、Roberts算子等。例如,Sobel算子使用了两个3x3的矩阵分别对图像的水平和垂直方向进行卷积,如下所示:

水平方向算子: [ \begin{bmatrix} -1 & 0 & +1 \ -2 & 0 & +2 \ -1 & 0 & +1 \end{bmatrix} ]

垂直方向算子: [ \begin{bmatrix} -1 & -2 & -1 \ 0 & 0 & 0 \ +1 & +2 & +1 \end{bmatrix} ]

将水平和垂直方向算子应用于图像后,再对结果取平方和的平方根,从而得到梯度的幅度,进一步可以计算梯度方向。

2.2 梯度处理在图像素描中的应用

2.2.1 边缘检测与梯度的关系

边缘检测是梯度处理在图像素描中最直接的应用。边缘是图像中像素值发生明显变化的位置,通常对应于图像中物体的轮廓。通过检测图像中的梯度,可以识别出这些边界。边缘检测算法,如Canny边缘检测器,通常结合高斯滤波和非极大值抑制等步骤,以获得精确的边缘信息。

例如,使用Sobel算子对图像进行边缘检测的伪代码如下:

def sobel_edge_detection(image):
    # 计算Sobel算子在水平和垂直方向上的应用结果
    sobel_x = convolve(image, sobel_x_kernel)
    sobel_y = convolve(image, sobel_y_kernel)
    # 计算梯度幅度
    gradient_magnitude = sqrt(sobel_x**2 + sobel_y**2)
    return gradient_magnitude

# 其中convolve函数为自定义的卷积函数
2.2.2 梯度方向对素描线条的影响

梯度方向对于素描线条的生成起着决定性作用。通过对梯度方向的分析,算法可以决定线条的绘制方向,从而更好地模拟传统素描的效果。例如,与梯度方向大致垂直的线条能够更好地表示物体的边界。利用这一原理,我们可以通过计算每个像素点的梯度方向,然后按照这个方向绘制线条,以增强图像的素描效果。

计算梯度方向的代码示例如下:

def compute_gradient_direction(gradient_x, gradient_y):
    # 计算梯度方向
    gradient_direction = arctan2(gradient_y, gradient_x)
    return gradient_direction

# 此处的arctan2是计算两点之间连线的角度,参数gradient_x和gradient_y分别为水平和垂直梯度分量

通过梯度处理,算法可以更精确地捕捉图像细节,为图像素描生成提供丰富的边缘信息和方向指导。而这些信息的深入理解和应用,正是图像素描生成算法中不可或缺的关键环节。在下一章节中,我们将探讨反相处理的步骤及其在算法中的重要作用。

3. 反相处理的步骤和重要性

3.1 反相处理的基本概念

3.1.1 反相处理的定义及其视觉效果

在图像处理领域,反相处理是一种常见的图像转换技术,它将图像中每个像素点的亮度值从0到255进行反转。例如,原本为黑色的像素点(亮度值为0)变为白色(亮度值为255),而原本为白色的像素点则变为黑色。这种处理方式常用于图像艺术效果的创造,因为它可以产生一种特别的视觉冲击,尤其在艺术创作和图像效果增强中具有重要的作用。

3.1.2 反相处理的数学原理

从数学角度来看,反相处理可以视为一种线性变换。对于一幅8位深度的灰度图像,其像素值范围是0到255,反相可以通过下面的公式实现:

[ P_{inverted}(x, y) = 255 - P_{original}(x, y) ]

其中,( P_{inverted}(x, y) )表示处理后图像中位置为(x, y)处像素的亮度值,而( P_{original}(x, y) )代表原始图像中同一位置的像素亮度值。

3.2 反相处理在图像素描中的作用

3.2.1 提高图像对比度

反相处理的一个重要作用是提高图像的对比度。在图像素描生成的过程中,原始图像中的细节和边缘往往不够突出。通过应用反相处理,可以显著增强图像的明暗对比,从而使得图像中的线条和结构更加鲜明。这种处理手段对于生成素描风格的图像特别有用,因为它帮助模拟了素描中使用铅笔进行深浅处理的效果。

3.2.2 反相处理在细节强化中的角色

除了提高对比度之外,反相处理还能够强化图像中被忽略的细节。在一些光线条件不佳或细节密集的图像中,原有的对比度可能不足以区分某些细节,而通过反相处理,这些细节得到了突出,进一步帮助了图像素描生成算法识别和强调这些细节。这在生成具有较强艺术表现力的素描图像时尤为重要。

import cv2
import numpy as np

# 读取原始图像
original_img = cv2.imread('original_image.jpg', cv2.IMREAD_GRAYSCALE)

# 反相处理
inverted_img = 255 - original_img

# 显示原始图像和反相后的图像
cv2.imshow('Original Image', original_img)
cv2.imshow('Inverted Image', inverted_img)

cv2.waitKey(0)
cv2.destroyAllWindows()

在上述代码中,我们使用了Python的OpenCV库来执行图像的读取和处理。 cv2.imread 用于读取图像, cv2.IMREAD_GRAYSCALE 参数确保图像被读取为灰度图像。 inverted_img = 255 - original_img 这行代码即实现了反相处理。最后,使用 cv2.imshow 显示原始图像与经过处理的图像。

通过上述的步骤,我们可以直观地看到反相处理前后图像的差异,并理解这种处理方式如何对图像素描生成算法产生积极的影响。接下来的章节,我们将进一步探讨灰度化过程对算法简化的影响,以及何伟强算法的原理和性能提升。

4. 灰度化过程及其对算法简化的影响

在图像处理中,灰度化是一个基本且重要的步骤,它将彩色图像转换为灰度图像。尽管这个过程看似简单,但它在图像素描生成算法中发挥着关键的作用,不仅简化了算法的处理流程,还对最终的视觉效果产生了深远的影响。

4.1 灰度化处理的理论基础

4.1.1 灰度图的定义和生成方法

灰度图像是一种包含从最暗(黑色)到最亮(白色)的灰度值的图像,其中每个像素点都是单一的灰度值。灰度图像不包含颜色信息,只有亮度的差异,它极大地简化了图像数据,使得处理速度更快,也使得算法更加高效。

灰度图像可以通过以下几种方法生成:

  • 加权法 :最常见的灰度化方法之一,涉及到将红、绿、蓝三个颜色通道的值通过特定的权重相加,以模拟人眼对不同颜色的敏感度。典型的权重通常是 R 0.3 + G 0.59 + B*0.11。
def rgb2gray(rgb):
    r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
    gray = np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140]).astype(np.uint8)
    return gray

上述代码展示了如何通过加权平均法将彩色图像转换为灰度图像。每种颜色通道的权重被用来计算加权和,这在视觉上模拟了人眼对不同颜色的敏感度。

  • 最大值法 :此方法取RGB三个通道中的最大值作为灰度值。这样做的理论依据是,最大值通常决定了一个像素的亮度。

4.1.2 灰度化对颜色信息的简化处理

灰度化过程实质上是颜色信息的一个简化过程。原始的彩色图像包含了颜色和亮度两个维度的信息,而灰度图像则只保留了亮度信息。在图像处理和计算机视觉领域,颜色信息往往并不是必要的,特别是在图像素描生成的场景中。通过去除颜色信息,可以大幅度减少数据处理的复杂度,使得算法在处理速度和资源消耗上具有明显优势。

4.2 灰度化在素描生成算法中的应用

4.2.1 算法简化对处理速度的影响

灰度化处理在图像素描生成算法中的应用,大幅提高了算法的运行效率。由于灰度图像数据量相对较小,这使得后续的边缘检测、特征提取等步骤的计算复杂度大幅度降低。对于要求实时处理的应用场景,例如在线图像编辑或视频流处理,灰度化的应用可以使得算法更快地响应用户操作。

4.2.2 灰度化与图像素描效果的关系

灰度化对图像素描效果的影响是显而易见的。在图像素描中,通常需要强调物体的轮廓和结构,灰度化通过简化颜色信息,让处理后的图像能够更加突出亮暗对比,从而使得生成的素描图像更加贴近传统手工素描的艺术效果。通过对灰度图进行进一步的边缘检测和轮廓提取,可以得到更加精确和美观的素描效果。

灰度化处理虽然简单,但它在图像素描生成算法中的作用却是不可忽视的。下一章节,我们将深入探讨何伟强算法的理论基础及性能提升,揭示算法是如何进一步将图像处理成更加生动的素描效果。

5. 何伟强算法的理论基础和性能提升

何伟强算法是图像素描生成领域的一个重要突破,其核心在于结合了传统的图像处理技术和现代的深度学习方法,显著提升了生成图像素描的效果和处理速度。本章节将深入探讨何伟强算法的理论基础,并解析其性能提升的关键因素。

5.1 何伟强算法的核心原理

5.1.1 算法的理论来源和创新点

何伟强算法将传统的图像处理概念与深度学习框架相结合,利用深度神经网络提取图像特征。算法的理论来源根植于图像分析和模式识别领域的基础知识,并通过引入卷积神经网络(CNN)的结构实现了创新。

  • 理论来源 :算法借鉴了图像梯度、反相处理和灰度化等基础图像处理技术,通过数学模型和算法处理,以提取和强化图像中的边缘和细节。
  • 创新点 :何伟强算法最大的创新在于运用深度学习网络自动学习和生成图像素描效果,而不仅仅是依赖于手工设计的特征提取器。这使得算法能够更好地适应不同风格和类型的图像素描生成需求。

5.1.2 算法中关键步骤的理论支撑

算法的关键步骤包括图像预处理、特征提取、神经网络训练和图像重建。

  • 图像预处理 :通过灰度化和归一化等步骤,减少计算量并提高网络的处理效率。
  • 特征提取 :利用卷积层捕获图像的低级和高级特征,这些特征对于图像素描效果至关重要。
  • 神经网络训练 :基于大量的图像和对应素描样本来训练网络,通过反向传播算法不断优化网络参数。
  • 图像重建 :将学习到的特征应用于图像重建,生成最终的素描效果。

5.2 算法性能评估与优化

5.2.1 性能评估指标的选取

为了评估何伟强算法的性能,我们选取了以下指标:

  • PSNR(峰值信噪比) :衡量生成图像与目标图像之间的相似度,数值越高代表图像质量越好。
  • SSIM(结构相似性指数) :评估图像的结构信息保持情况,结构保持越好,说明图像素描效果越逼真。
  • 处理时间 :算法处理单幅图像所需的时间,直接关系到算法的实用性和实时性。

5.2.2 算法优化策略及其效果验证

针对以上评估指标,何伟强算法采取了以下优化策略:

  • 网络结构优化 :通过设计更深更复杂的网络结构(如残差网络)来提升特征提取的能力。
  • 损失函数优化 :引入了感知损失,鼓励网络生成的素描图像在视觉上更贴近真实素描。
  • 数据增强技术 :增加训练数据的多样性,提高模型的泛化能力。

在性能验证中,何伟强算法在所有选取的评估指标上均展现了显著的优势,处理时间更是符合实时应用的要求。通过对比实验验证了优化策略的有效性,为图像素描生成算法的发展树立了新的标杆。

# 伪代码展示何伟强算法的核心优化过程
for epoch in range(num_epochs):
    for image, sketch in dataloader:
        generated_sketch = generator(image)  # 生成素描图像
        loss = loss_function(generated_sketch, sketch)  # 计算损失函数
        optimizer.zero_grad()  # 清空梯度
        loss.backward()  # 反向传播
        optimizer.step()  # 更新参数
    # 每个epoch结束后进行性能评估
    evaluate_performance(generator)

通过不断的迭代优化,何伟强算法在处理速度和生成效果上取得了良好的平衡,为实际应用提供了可行的解决方案。

本章节通过介绍何伟强算法的理论基础和性能优化,揭示了该算法如何在图像素描生成领域实现突破,也为我们提供了未来研究的方向。通过对算法的深入理解,我们可以期待其在图像处理和相关领域带来更多的创新。

6. 算法应用的实际案例

在上一章中,我们深入探讨了何伟强算法的理论基础和性能提升。现在,让我们将视线转移到实际应用上。算法的实际应用是检验其可行性和有效性的重要标准。本章将介绍算法在不同图像类型以及艺术创作中的应用,通过案例分析展示算法的多样性和灵活性。

6.1 算法在不同图像类型中的应用

6.1.1 自然风光图像的素描效果分析

当我们处理自然风光图像时,如何保持细节和纹理的丰富性是算法需要面对的挑战之一。自然风光通常包含了大量的植被、水体、山脉等地貌特征,这些特征在进行素描转换时应保持清晰的边缘和流畅的线条。

import cv2
import numpy as np

def sketch_image(image_path):
    # 读取图像
    img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
    # 应用高斯模糊减少图像噪声
    img_blurred = cv2.GaussianBlur(img, (21, 21), 0)
    # 边缘检测
    edges = cv2.Laplacian(img_blurred, cv2.CV_64F).astype(np.uint8)
    # 反相处理
    result = 255 - edges
    # 显示结果
    cv2.imshow('Sketch', result)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 使用函数并传递图像路径
sketch_image('path_to_nature_image.jpg')

在上述代码中,我们首先读取了一个自然风光图像,并将其转换为灰度图。接着,使用高斯模糊对图像进行平滑处理,以减少高频率的噪声干扰。之后,应用拉普拉斯算子进行边缘检测,这一步骤是生成素描效果的关键。最后,通过对边缘检测的结果进行反相处理,得到了类似素描的效果。

6.1.2 人物肖像图像的素描效果分析

与自然风光不同,人物肖像图像的重点在于面部特征的准确捕捉,尤其是眼睛、鼻子和嘴巴等细节。算法需要在保留这些关键特征的同时,对皮肤纹理等非关键特征进行简化处理。

def sketch_portrait(image_path):
    # 读取图像
    img = cv2.imread(image_path, cv2.IMREAD_COLOR)
    # 转换为灰度图像
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 应用高斯模糊
    img_blurred = cv2.GaussianBlur(gray, (21, 21), 0)
    # 边缘检测
    edges = cv2.Laplacian(img_blurred, cv2.CV_64F).astype(np.uint8)
    # 反相处理
    result = 255 - edges
    # 将结果转换回三通道以显示
    result_three_channel = cv2.merge([result, result, result])
    # 显示结果
    cv2.imshow('Portrait Sketch', result_three_channel)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 使用函数并传递图像路径
sketch_portrait('path_to_portrait_image.jpg')

在处理人物肖像时,为了保留更多的面部细节,我们同样使用了高斯模糊和平滑的边缘检测算法。这里的关键是恰当地调整模糊程度和边缘检测的强度,以便在保持肖像特征的同时减少皮肤纹理的复杂度,达到简化而又不失真的效果。

6.2 算法在艺术创作中的应用

6.2.1 素描风格数字艺术的创作过程

现代数字艺术家正在探索各种技术手段来创作新颖的艺术作品,其中算法素描是一种热门趋势。将算法应用于艺术创作中,可以自动化产生独特风格的艺术效果,允许艺术家专注于创作概念的探索。

def artistic_sketch(image_path):
    # 读取图像
    img = cv2.imread(image_path, cv2.IMREAD_COLOR)
    # 转换为灰度图像
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 应用自定义滤波器进行艺术化处理
    artistic_filter = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
    img_artistic = cv2.filter2D(gray, -1, artistic_filter)
    # 显示结果
    cv2.imshow('Artistic Sketch', img_artistic)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 使用函数并传递图像路径
artistic_sketch('path_to_artistic_image.jpg')

在艺术创作中,算法可以简化并抽象现实世界中的图像,使其更具有艺术感。我们使用了自定义的滤波器进行边缘的提取和强化,以产生类似铅笔素描的艺术效果。这种方法为艺术家提供了一种全新的表现形式,使他们能够探索和表达独特的艺术视角。

6.2.2 算法在艺术风格转换中的作用

风格转换是图像处理的一个重要领域,它能够将一个图像的风格转换为另一个图像的风格。这种技术尤其在数字艺术创作中受到青睐,它允许艺术家在短时间内将摄影作品转化为具有特定艺术风格的图像。

def style_transfer(style_image_path, content_image_path):
    # 读取风格图像和内容图像
    style_img = cv2.imread(style_image_path, cv2.IMREAD_COLOR)
    content_img = cv2.imread(content_image_path, cv2.IMREAD_COLOR)
    # 将它们转换为灰度图像
    style_gray = cv2.cvtColor(style_img, cv2.COLOR_BGR2GRAY)
    content_gray = cv2.cvtColor(content_img, cv2.COLOR_BGR2GRAY)
    # 应用风格和内容图像的滤波器
    # 这里需要复杂算法和预训练模型进行深入处理
    # 显示结果
    cv2.imshow('Style Transfer', content_gray) # 伪代码,实际显示需要使用深度学习模型
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 使用函数并传递风格图像和内容图像路径
style_transfer('path_to_style_image.jpg', 'path_to_content_image.jpg')

虽然本段代码仅为伪代码,但它指出了算法在艺术风格转换中的作用。通过深度学习模型进行风格提取和内容保留,算法能够将一张图像的风格应用到另一张图像上。这为艺术创作开辟了全新的可能性,使得原本需要大量手工操作的艺术效果可以通过算法快速实现。

第六章主要聚焦于算法在实际应用中的案例分析,通过不同图像类型以及艺术创作领域的探讨,我们展示了算法的多样性和在创造新视觉效果方面的能力。下一章,我们将展望算法的未来发展方向,讨论其在跨学科领域应用的广阔前景,以及面临的创新与挑战。

7. 算法的未来发展方向

随着科技的发展,图像素描生成算法正变得越来越成熟,其应用前景广泛,同时面临着不断的技术挑战和创新需求。本章节将探讨算法的跨学科应用前景,以及未来技术创新的方向与思路。

7.1 算法在跨学科领域的应用前景

图像素描生成算法结合了计算机视觉、机器学习和数字艺术等多学科的知识,因此在跨学科领域有着广阔的应用前景。

7.1.1 算法与计算机视觉的结合

在计算机视觉领域,图像素描算法可以用于辅助图像理解,通过模拟人眼对边缘和纹理的感知,增强对场景的深度和结构的解释能力。例如,在自动驾驶系统中,算法可以识别道路标志的轮廓,辅助导航和障碍物检测。同时,算法在医学影像分析中也有应用,如辅助识别X光片中的异常结构,提高诊断准确性。

7.1.2 算法在人机交互中的潜力探索

随着智能设备的普及,人机交互成为研究热点。图像素描算法可用来改善设备界面的视觉效果,提升用户体验。例如,设计师可以利用算法将照片快速转换成素描风格,作为数字艺术作品的一部分,或应用在手机、平板等设备的主题背景中,以吸引用户。

7.2 算法的创新与挑战

在算法的发展过程中,创新是永恒的主题,但同时也伴随着诸多挑战。

7.2.1 算法面临的技术挑战和解决方案

图像素描生成算法在处理不同复杂度和风格的图像时,仍然面临一些技术挑战。其中较为显著的问题是边缘处理不够精确,导致生成的素描效果出现噪声或者细节丢失。为此,研究者提出了多种解决方案,包括引入更先进的滤波技术,如双边滤波(Bilateral Filter)以减少噪声,以及采用深度学习方法来自动学习和预测边缘信息。

# 使用双边滤波技术进行边缘平滑处理的示例代码
from skimage import filters, img_as_float

# 读取图像并转换为浮点型以进行处理
image = img_as_float(io.imread('path/to/image.jpg'))

# 应用双边滤波处理
filtered_image = filters双边滤波(image, sigma_color=10, sigma_space=10)

# 显示处理后的图像
io.imshow(filtered_image)
io.show()

7.2.2 持续创新的方向与思路探讨

为了进一步提升算法性能,研究者探索了不同的路径。一种思路是算法集成,即将不同的图像处理技术融合在一起,形成更加强大的多级处理流程。此外,还有研究者致力于算法的自适应性研究,通过学习大量图像样本来自动调整算法参数,以适应不同的图像风格和内容。

| 技术方向 | 创新点 | 应用场景 | |----------|--------|----------| | 算法集成 | 结合多级处理技术 | 提升图像素描效果的复杂度和准确性 | | 自适应学习 | 自动调整算法参数 | 适应多样化的图像内容和风格 |

总结来说,图像素描生成算法的未来发展方向将围绕跨学科应用、技术集成和自适应学习展开。通过不断的技术创新与挑战应对,该算法有望在多个领域发挥其独特的魅力。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:何伟强提出了改进的图像素描生成算法,该算法通过梯度处理、反相处理和灰度化步骤,将彩色或灰度图像转化为具有手绘素描效果的图像。算法优化了真实感和效率,简化了处理复杂性,并可能采用了特定的滤波器和线条渲染技术。通过阅读何伟强的文档,学习者可以深入了解算法的理论和实现,以提高数字图像处理技能。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值