求行列式

求一个方阵的行列式常见的思路有两种:

  1. 按行按列展开
  2. 化成上三角或者下三角型再将对角线元素相乘。

说明一下这两种思路分别是怎么操作的,对于一个矩阵A:

A=\begin{pmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21}& a_{22}& ... & a_{2n}\\ ...& ...&... & ...\\ a_{n1}& a_{n2} & ... &a_{nn} \end{pmatrix}\in M\mathbb{\mathit{n}\times \mathit{n}}(\mathbb{C})

斜对称,多重线性函数det()的定义如下:

\small det(A)=\sum_{\sigma \in Sn}^{ }\varepsilon _{\sigma } \cdot a_{1\sigma _{(1)}} \cdot a_{2\sigma_{(2)}} \cdots a_{n\sigma_{(n)}},

其中,

Sn为n阶置换群, \varepsilon _{\sigma } 是置换σ的符号(如果你看不懂这句话,没关系,跳过就好,或者去读一读著名的 А.И.科斯特利金的著作《代数学引论》)

  • 思路1:

detA=(-1)^{1+1}a_{11}det\begin{pmatrix} a_{22} &... &... &a_{2n} \\ ...& ...&... & ...\\ ...& ... &... & ...\\ a_{n2}& ... &... & a_{nn} \end{pmatrix}+(-1)^{2+1}a_{21}det\begin{pmatrix} a_{12} &... &... & a_{1n}\\ a_{32}& ... &... & a_{3n}\\ ...& ...&... &... \\ a_{n2}&... &... & a_{nn} \end{pmatrix}+\cdots +(-1)^{n+1}a_{n1}det\begin{pmatrix} a_{12} &... & ...& a_{1n}\\ ... & ... & ...&... \\ ...& ...& ...& ...\\ a_{n-1,2}&... &... & a_{n-1,n} \end{pmatrix}

就这样一直递归下去就求出来了

 

  • 思路2:

利用a11, 将第一列的其他所有元素都化为零(前提是a11不等于零),如果a11为零,就把第一行和另外一个第一个元素不为零的行交换,别忘了还要乘 -1

 

当a11 不为零的时候,以第二行为例:

      \small -\frac{a_{21}}{a_{11}}\begin{pmatrix} a_{21} &\cdots & a_{2n} \end{pmatrix}

加到第二行上,得到的第二行为:

\small \begin{pmatrix} 0 &a_{22}-\frac{a_{21}}{a_{11}}\cdot a_{12} &\cdots &a_{2n}-\frac{a_{21}}{a_{11}} \cdot a_{1n} \end{pmatrix}

对于接下来的 m - 1 行执行同样的操作,得到的矩阵的第一列只有第一行是 a11 ,其他的都是零,就像这样:
\small \begin{pmatrix} a_{11} &a_{12} &\cdots & a_{1n}\\ 0 & a_{22}-\frac{a_{21}}{a_{11}} \cdot a_{12} & \cdots &a_{2n}-\frac{a_{21}}{a_{11}} \cdot a_{1n} \\ \cdots& \cdots &\cdots &\cdots \\ 0& a_{n2}- \frac{a_{n1}}{a_{11}} \cdot a_{12} & \cdots & a_{nn} - \frac{a_{n1}}{a_{11}} \cdot a_{1n} \end{pmatrix}

 

 

接下来,我们只要对红色方框内的这部分“新矩阵”实施上面的操作(抱歉图有点糊)

 

 

 

  我们把最终得到的矩阵计作B:

\small B=\begin{pmatrix} b_{11} &b_{12} &b_{13} &\cdots & b_{1,n-2} &b_{1,n-1} &b_{1n} \\ 0& b_{22} &b_{23} & \cdots & b_{2,n-2} &b_{2,n-1} & b_{2n}\\ 0& 0 &b_{33} & \cdots & b_{3,n-2} & b_{3,n-1} &b_{3n} \\ 0& 0& 0& \cdots & b_{4,n-2} & b_{4,n-1} &b_{4n}} \\ \cdots& \cdots & \cdots & \cdots & \cdots & \cdots &\cdots \\ 0 & 0 & 0& \cdots & 0& b_{n-1,n-1} &b_{n-1,n} \\ 0 & 0& 0 & \cdots &0 &0 & b_{nn} \end{pmatrix}

 

 

 

这时,既有:

\small detA=b_{11} \cdot b_{22} \cdots b_{n-1,n-1} \cdot b_{nn}

 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值