在 PyTorch 中实现 FCN 的多分类模型,你需要先了解 FCN 的原理和如何在 PyTorch 中进行单分类。
首先,你需要准备训练数据,包括输入图像和对应的标签。然后,定义 FCN 模型的网络结构,包括卷积层、池化层、全局平均池化层等。接着,定义损失函数和优化器。在训练过程中,通过调用模型的 forward
方法计算模型的输出,并计算损失,再使用优化器对模型的参数进行更新。最后,在验证集上评估模型的性能。
示例代码如下:
```python import torch import torch.nn as nn
准备训练数据
x = torch.rand(batch_size, 3, 32, 32) y = torch.randint(0, num_classes, (batch_size,))
定义 FCN 模型
class FCN(nn.Module): def init(self, num_classes): super().init() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.pool = nn.MaxPool2d(2) self.gap = nn.AdaptiveAvgPool2d(1) self.fc &#