Pytorch快速入门系列---(十八)Pytorch实现FCN图像语义分割网络

本文介绍了如何在PyTorch中使用预训练的语义分割网络,如FCN_resnet101,并详细阐述了基于VGG19构建FCN-8s网络的过程,包括数据预处理、网络结构分析和训练测试。
摘要由CSDN通过智能技术生成

针对图像的语义分割网络,本节将介绍PyTorch中已经预训练好网络的使用方式,然后使用VOC2012数据集训练一个FCN语义分割网络。

一、使用预训练好的语义分割网络

PyTorch提供了已预训练好的图像语义分割网络,已经预训练好的可供使用的网络模型如下表所示:

网络类 描述
segmentation.fcn_resnet50() 具有Resnet-50结构的全卷积网络模型
segmentation.fcn_resnet101() 具有Resnet-101结构的全卷积网络模型
segmentation.deeplabv3_resnet50() 具有Resnet-50结构的DeepLabV3网络模型
segmentation.deeplabv3_resnet101() 具有Resnet-101结构的DeepLabV3网络模型

下面以segmentation.fcn_resnet101()为例,介绍如何使用这些已经预训练好的网络结构进行图像的语义分割任务。

针对语义分割的分类器,需要输入图像使用了相同的预处理方式,即先将每张图像的像素值预处理到0 ~ 1之间,然后对图像进行标准化处理&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

城南皮卡丘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值