大学一年了什么都不会,最近又什么都不想学,可是离正式打比赛还有仅仅半年,咨询了好多个学长我现在该学什么,如何静下心学习。考虑了好九八,决定步上jh学长的后路学习一下A*搜索。那么接下来开始?!
写之前拜读了这篇文章:八数码的八境界
代码是hdu1043八数码 bfs 打表/双向bfs/A*+康托判重+逆序奇偶剪枝
本文版权归原作者、译者所有;如果侵害到您的权益,请联系我,我将删除本文。
境界一、 暴力广搜+STL
我们从{1,2,3,4,5,6,7,8,x}这个状态开始搜索,利用bfs跑遍每一种状态,并将path记录,复杂度9!,查询O(1)
判重我们利用set的find()函数
set红黑树实现,查找效率log(n);总的效率nlog(n)(10^6),肯定会TLE
丑陋的代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<set>
#include<map>
#include<queue>
#include<vector>
#include<string>
using namespace std;
struct node{
string sty;//状态
string path;//路径
int pos;//x的位置
node(string sty,string path,int pos):sty(sty),path(path),pos(pos){}
};
map<string,string>res;
set<string>vis;
int to[4][2]={-1,0,1,0,0,-1,0,1};
string dir("durl");//4个方向对应的操作
bool check(int x,int y){
return x>=0&&x<=2&&y>=0&&y<=2;
}
void bfs(){
queue<node>q;
node n("12345678x","",8);
vis.insert("12345678x");
q.push(n);
while(!q.empty()){
n=q.front();
q.pop();
int x=n.pos/3;
int y=n.pos%3;
for(int i = 0; i < 4; i++){
int newx=x+to[i][0];
int newy=y+to[i][1];
if(!check(newx,newy))continue;
int newpos=newx*3+newy;
swap(n.sty[n.pos],n.sty[newpos]);//交换当前x与移动后的x位置
if(vis.find(n.sty)!=vis.end()){//set查重
swap(n.sty[n.pos],n.sty[newpos]);//换回防止在判断下一个方向时,改变了原始的状态
continue;
}
else{
q.push(node(n.sty,dir[i]+n.path,newpos));
vis.insert(n.sty);
res[n.sty]=dir[i]+n.path;
swap(n.sty[n.pos],n.sty[newpos]);
}
}
}
}
int main(){
string in;
string tmp;
res[in]="";
bfs();
while(cin>>tmp){
in.push_back(tmp[0]);
for(int i = 1; i < 9; i++){
cin>>tmp;
in.push_back(tmp[0]);
}
if(res[in]=="")printf("unsolvable\n");
else cout<<res[in]<<endl;
}
return 0;
}
由于path是由结构体存储,也会Mle
境界二、广搜+哈希
T 是由于大规模的遍历,已经set的查重和string的使用,那么我们可以利用哈希进行o(1)的查重
这里哈希是利用康托展开和逆康托展开并且由之前的string记录路径改为char记录,并且利用前驱记录由哪个状态改变而来
path[s.status].from=parent.stauts
思路与境界三相同所以代码也在三给出
境界三、广搜+哈希+打表
与其每一组进行一次bfs,不如直接由目标状态{1,2,3,4,5,6,7,8,x}直接打表并O(1)查询
别人借鉴过来的不丑陋!
出处
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
#include<string>
using namespace std;
const int maxn = 362880+5;
int fac[9];
int vis[maxn];
int to[4][2]={-1,0,1,0,0,-1,0,1};
char dir[]="durl";
struct node{
int pos,status;
node(int pos,int status):pos(pos),status(status){}
};
struct path{
int from,dir;
}p[maxn];
void calFac(int f[],int n){
f[0]=1;
for(int i = 1; i < n; i++)f[i]=f[i-1]*i;
}
int encodeCantor(int s[]){
int i,j,temp,num;
num=0;
for(int i = 0; i < 9; i++){
temp=0;
for(int j = i+1; j < 9; j++){
if(s[i]>s[j])temp++;
}
num+=temp*fac[8-i];
}
return num;
}
void decodeCantor(int s[],int val){
bool flag[10];
memset(flag,0,sizeof flag);
for(int i = 0; i < 9; i++){
int temp=val/fac[8-i];
for(int j = 0; j <=temp; j++){
if(flag[j])temp++;
}
s[i]=temp;
flag[temp]=1;
val=val%fac[8-i];
}
}
bool check(int x,int y){
return x>=0&&y>=0&&x<=2&&y<=2;
}
void bfs(){
queue<node>q;
int s[]={1,2,3,4,5,6,7,8,0};
node n(8,encodeCantor(s));
vis[n.status]=1;
p[n.status].from=-1;
q.push(n);
while(!q.empty()){
n=q.front();q.pop();
int x=n.pos/3,y=n.pos%3;
for(int i = 0; i < 4; i++){
int newx=x+to[i][0];
int newy=y+to[i][1];
if(!check(newx,newy))continue;
int newpos = newx*3+newy;
decodeCantor(s,n.status);
swap(s[n.pos],s[newpos]);
int nstatus = encodeCantor(s);
if(!vis[nstatus]){
p[nstatus].from=n.status;
p[nstatus].dir=i;
vis[nstatus]=1;
q.push(node(newpos,nstatus));
}
swap(s[n.pos],s[newpos]);
}
}
}
void print(int s){
while(p[s].from != -1){
printf("%c",dir[p[s].dir]);
s=p[s].from;
}
printf("\n");
}
void init(){
calFac(fac,9);
memset(vis,0,sizeof vis);
}
int main(){
init();
bfs();
string tmp;
int in[9];
while(cin>>tmp){
if(tmp[0]=='x')in[0]=0;
else in[0]=tmp[0]-'0';
for(int i = 1; i < 9; i++){
cin>>tmp;
if(tmp[0]=='x')in[i]=0;
else in[i]=tmp[0]-'0';
}
int status = encodeCantor(in);
if(!vis[status])printf("unsolvable\n");
else
print(status);
}
return 0;
}
境界四、双向广搜+哈希
减少状态膨胀,即用双向bfs
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
const int maxn = 362880+7;
int to[4][2]={-1,0,1,0,0,-1,0,1};
char dir1[]={"udlr"};
char dir2[]={"durl"};
struct node{
int status,pos;
};
int p1[maxn],p2[maxn];
int d1[maxn],d2[maxn];
bool vis1[maxn],vis2[maxn];
int fac[9];
void init(){
fac[0]=1;
for(int i = 1; i < 9; i++)fac[i]=fac[i-1]*i;
}
int encodeCantor(int s[]){
int cnt,sum=0;
for(int i = 0; i < 9; i++){
cnt=0;
for(int j = i+1; j < 9; j++)
if(s[i]>s[j])cnt++;
sum+=fac[8-i]*cnt;
}
return sum;
}
void decodeCantor(int a[],int s){
bool flag[9];
memset(flag,0,sizeof flag);
for(int i = 0; i < 9; i++){
int cnt=s/fac[8-i];
for(int j = 0; j <= cnt; j++){
if(flag[j])cnt++;
}
a[i]=cnt;
flag[cnt]=1;
s=s%fac[8-i];
}
}
bool check(int x,int y){
return x>=0&&y>=0&&x<=2&&y<=2;
}
void print(int status){
int s = status;
char tmp[36];int len = 0;
while(p1[s]!=-1){
tmp[len++]=dir1[d1[s]];
s=p1[s];
}
s = status;
for(int i = len-1; i >= 0; i--)printf("%c",tmp[i]);
while(p2[s]!=-1){
printf("%c",dir2[d2[s]]);
s=p2[s];
}
printf("\n");
}
void bfs(int po,int sta){
queue<node>q1,q2;
memset(vis1,0,sizeof vis1);
memset(vis2, 0 , sizeof vis2);
int arr[9];
int aim[]={1,2,3,4,5,6,7,8,0};
int aim_s=encodeCantor(aim);
node n;
n.status = sta;
n.pos=po;
q1.push(n);
n.status=aim_s;
n.pos=8;
q2.push(n);
node cur,next;
p1[sta]=-1;
p2[aim_s]=-1;
vis1[sta]=1;
vis2[aim_s]=1;
int flag;
while(!q1.empty()||!q2.empty()){
if(!q1.empty()&&(q2.empty()||q1.size()<=q2.size())){
flag=1;
cur=q1.front();
q1.pop();
if(vis2[cur.status]){
print(cur.status);
return ;
}
}
else{
flag=2;
cur=q2.front();
q2.pop();
if(vis1[cur.status]){
print(cur.status);
return ;
}
}
decodeCantor(arr,cur.status);
int x=cur.pos/3,y=cur.pos%3;
for(int i = 0; i < 4; i++){
int nx=x+to[i][0],ny=y+to[i][1];
if(!check(nx,ny))continue;
int newpos=nx*3+ny;
swap(arr[cur.pos],arr[newpos]);
int nstatus = encodeCantor(arr);
if(flag==1&&!vis1[nstatus]){
p1[nstatus]=cur.status;
d1[nstatus]=i;
if(vis2[nstatus]){
print(nstatus);
return;
}
else{
vis1[nstatus]=1;
next.status=nstatus;
next.pos=newpos;
q1.push(next);
}
}
else if(flag==2&&!vis2[nstatus]){
p2[nstatus]=cur.status;
d2[nstatus]=i;
if(vis1[nstatus]){
print(nstatus);
return;
}
else{
vis2[nstatus]=1;
next.pos=newpos;
next.status=nstatus;
q2.push(next);
}
}
swap(arr[cur.pos],arr[newpos]);
}
}
return ;
}
bool pruning(int arr[]){
int cnt=0;
for(int i = 0; i < 9; i++){
if(arr[i]==0)continue;
for(int j = i + 1; j < 9; j++){
if(arr[j]&&arr[j]<arr[i])cnt++;
}
}
if(cnt%2)return true;
return false;
}
int main(){
char tmp[3];
int in[9];
int pos;
init();
while(~scanf("%s",tmp)){
if(tmp[0]=='x'){
in[0]=0;
pos=0;
}
else in[0]=tmp[0]-'0';
for(int i = 1; i < 9; i++){
scanf("%s",tmp);
if(tmp[0]=='x'){
in[i]=0;
pos=i;
}
else in[i]=tmp[0]-'0';
}
int status = encodeCantor(in);
if(pruning(in))printf("unsolvable\n");
else{
bfs(pos,status);
}
}
return 0;
}
境界五、A*+哈希+简单估价函数
境界六、A*+哈希+曼哈顿距离
境界七、A*+哈希+曼哈顿距离+小顶堆
直接走境界7?
A算法
理解A寻路算法
启发式算法的估价函数为 f(n) = g(n) + h(n)
G 表示从起点 A 移动到网格上指定方格的移动耗费 (可沿斜方向移动).
H 表示从指定的方格移动到终点 B 的预计耗费 (H 有很多计算方法, 这里我们设定只可以上下左右移动).
A*算法的估价函数可以表示为
f’(n) = g’(n) + h’(n)
f’(n)是估价函数,g’(n)是起点到终点的最短路径值,h’(n)是n到目标的最断路经的启发值。由 于这个f’(n)其实是无法预先知道的,所以我们用估价函数f(n)做近似。g(n)代替g’(n),但 g(n)>=g’(n) 才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h’(n),但h(n)<=h’(n)才可(这一点特别的重 要)。
这里的G指的是bfs扩展的层数,因为一层就是一步
H指的是当前位置到终点的曼哈顿距离
计算曼哈顿距离的函数为
int tx[]={2,0,0,0,1,1,1,2,2};
int ty[]={2,0,1,2,0,1,2,0,1};
double getH(int a[]){
int x,y;
int h = 0;
for(int i = 0; i < 9; i++){
if(a[i]){
x = i / 3;
y = i % 3;
h += abs(x-tx[a[i]])+abs(y-ty[a[i]]);
}
}
return h;
}
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn = 362880+7;
int fac[]={1,1,2,6,24,120,720,5040,40320};
int to[4][2]={-1,0,1,0,0,-1,0,1};
char dir[]="udlr";
bool vis[maxn];
struct node{
int status,pos;
double g,h;
bool operator<(const node&n)const{
return (g+h)>(n.g+n.h);
}
};
struct path{
int from,dir;
}p[maxn];
int encodeCantor(int a[]){
int sum = 0;
for(int i = 0;i < 9; i++){
int cnt = 0;
for(int j = i+1; j < 9; j++)if(a[i]>a[j])cnt++;
sum+=cnt*fac[8-i];
}
return sum;
}
void decodeCantor(int a[],int val){
int flag[9],cnt=0;
memset(flag,0,sizeof flag);
for(int i = 0; i < 9; i++){
cnt = val / fac[8-i];
for(int j = 0; j <= cnt; j++){
if(flag[j])cnt++;
}
a[i]=cnt;
flag[cnt]=1;
val = val%fac[8-i];
}
}
int tx[]={2,0,0,0,1,1,1,2,2};
int ty[]={2,0,1,2,0,1,2,0,1};
double getH(int a[]){
int x,y;
int h = 0;
for(int i = 0; i < 9; i++){
if(a[i]){
x = i / 3;
y = i % 3;
h += abs(x-tx[a[i]])+abs(y-ty[a[i]]);
}
}
return h;
}
bool pruning(int a[]){
int sum = 0;
for(int i = 0; i < 9; i++){
if(!a[i])continue;
for(int j = i+1; j < 9; j++){
if(a[j]&&a[i]>a[j])sum++;
}
}
if(sum%2)return true;
else return false;
}
bool check(int x,int y){
return x>=0&&y>=0&&x<=2&&y<=2;
}
void A_S(int a[]){
int aim[]={1,2,3,4,5,6,7,8,0};
int aim_s=encodeCantor(aim);
priority_queue<node>que;
memset(vis,0,sizeof vis);
node cur,next;
int status = encodeCantor(a);
for(int i = 0; i < 9; i++){
if(!a[i]){
cur.pos = i;
break;
}
}
cur.status = status;
cur.g=0;
cur.h=getH(a);
que.push(cur);
p[status].from = -1;
vis[status]=1;
while(!que.empty()){
cur = que.top();
que.pop();
decodeCantor(a,cur.status);
if(cur.status == aim_s){
int s = cur.status,len = 0;
char res[maxn];
while(p[s].from != -1){
res[len++]=dir[p[s].dir];
s=p[s].from;
}
for(int i = len-1; i>=0; i--)printf("%c",res[i]);
printf("\n");
return ;
}
else{
int x = cur.pos/3,y=cur.pos%3;
for(int i = 0; i < 4; i++){
int nx = x + to[i][0],ny = y + to[i][1];
int newpos=nx*3+ny;
if(!check(nx,ny))continue;
swap(a[cur.pos],a[newpos]);
int nstatus = encodeCantor(a);
if(!vis[nstatus]){
next.pos=newpos;next.status=nstatus;next.g=cur.g+1;next.h=getH(a);
p[next.status].from = cur.status;
p[next.status].dir = i;
vis[nstatus]=1;
que.push(next);
}
swap(a[cur.pos],a[newpos]);
}
}
}
printf("unsolvable\n");
}
int main(){
char tmp[5];
int in[9];
while(~scanf("%s",tmp)){
if(tmp[0]=='x')in[0]=0;
else in[0]=tmp[0]-'0';
for(int i = 1; i < 9; i++){
scanf("%s",tmp);
if(tmp[0]=='x')in[i]=0;
else in[i]=tmp[0]-'0';
}
if(pruning(in))printf("unsolvable\n");
else A_S(in);
}
return 0;
}