通往AGI 的「System2·慢思考·快实践」

阅读提示:
整体系列文章于2023年底尝试挖掘并探寻以ChatGPT为代表的LLMs和以AlphaGO/AlphaZero及当下AlphaDev为代表的Alpha系列之间的AR和RL思想的背后底层理论及形式上的统一,同时尝试基于去年OpenAI暴露出的project Q*可能的关于推理过程学习再到系统①(快)思考与系统②(慢)思考的形式化统一的延展性思考,以展望当下面向未来AGI路径可行性...正如前几日AI一姐李飞飞教授所说,人工智能即将迎来它的「牛顿时刻」...
融合RL与LLM思想 · 探寻世界模型迈向AGI系列文章拟分为「上篇」「中篇」「下篇」,因为文章内容整体比较冗长,也许会给大家造成一定的阅读困扰,但仍希望大家能够阅读下去,内容上尽量采用简单通俗的表述,其中文章囊括了诸如强化学习「RL」、自回归「AR」大语言模型「 LLMs」等技术领域深刻内涵思考,穿插关联了丰富的计算机科学/数学/物理学/哲学/心理学等领域跨学科内容,回顾了人工智能近现代发展历史,并在部分章节中以作者视角回顾总结过去一年中大模型给自己带来的思想冲击...大家如有疑问困惑和不同看法也非常欢迎评论指正或直接如流探讨,感谢!
本次内容为结合近期AI产业界与学术界的快速发展之下,针对系列文章「融合RL与LLM思想 · 探寻世界模型迈向AGI ·下篇」内容的精修与更新整合
本文原创作者:吕明
Wechat:lvming6755
知乎: 吕明 - 知乎


融合RL与LLM思想 · 探寻世界模型迈向AGI 的「下篇」

写在前面:

本次内容为结合近期AI产业界与学术界的快速发展之下,针对系列文章「融合RL与LLM思想 · 探寻世界模型迈向AGI ·下篇」内容的精修与更新整合,前两篇内容大家可回顾参考如下:

融合RL与LLM思想,探寻世界模型以迈向AGI「上篇」

融合RL与LLM思想,探寻世界模型以迈向AGI「中/下篇」

融合RL与LLM思想,探寻世界模型以迈向AGI「合集」

合集PDF版本已更新,参考如下:

另外,最终合集版针对本篇更新又做了v5.1版更新,大家可访问百度网盘地址自行下载:

链接: https://pan.baidu.com/s/1FA9TgvbFJOjuPJUtcM5aBQ?pwd=lm51

提取码: lm51

或扫码下载

正文如下↓

「上/中篇」跟大伙盘道了那么多,不忘初心,其目的是什么?

下面列出了最开始我的一些想法目的,希望通过一种慢思考的探索方式能够更进一步探寻当下LLM技术发展到AGI的可能发展路径,大家可以结合我在「上篇」和「中篇」中的内容,简单思考和回味下如下问题,其中的内容大家可以回顾「上篇」和「中篇」的某些章节,也许会存在一些大家的想要的答案或些许指引,也希望能起到抛砖引玉的作用,帮助大家在今后的学习和实践中按照自己的方式进行答案的持续探寻..

1、探究以泛GPT为代表的预训练自回归编码模型(即LLM)与Alpha系列为代表的RL,再到Rora为代表的DiT视觉生成领域模型的本质普遍性及表象差异性,以及为什么要将其两者或三者联系甚至融合起来看待?

本质上是尝试对比采用上述三种模型结构或算法思想对真实世界中拟合的各种认知模式过程中所对应的数据分布或构象的探究 · 这里的分布或构象的本质包括对真实世界中所蕴含的自然物理规律认知模式、基于现实抽象的概念认知模式、抽象的形式化逻辑认知模式、复杂的个体生物&群体社会行为认知模式等呈现并映射的多样化流形数据进行模拟分布表示 - 这部分请参见「中篇」中对于LLM与RL融合章节最后的观点阐释部分。其过程的本质是运用抽象各种数学变换(如拉式变换/傅里叶变换/Z变换/希尔伯特变换等多种数学变换方法实现微分方程→普通多项式代数方程)的求解,即在神经网络中,通过对可微(学习)的激活函数进行梯度拟合近似,如激活函数在网络中被参数化为多项式、样条、sigmoid线性单元或神经网络等。

因此,对于不同领域真实世界所呈现并表示的数据流形分布在数据维度、模态以及流形轨迹的多样化上,导致了采用不同的训练模式(如自回归预训练模式 vs 强化学习模式)与采用的不同数学变换方法或者所采用的多样激活函数及激活形式的(如Multilayer Perceptron - MLP vs Kolmogorov-Arnold Networks - KAN)不同。

另外上述在不同的真实世界领域内,通过实践,存在着跨领域的流形分布的可迁移性,即多个空间中的普遍泛化可迁移性,即跨领域泛化能力的移植,领域间也许也存在着背后底层的在概念化、形式化更广泛的联系(多模态本身也是建立在这种跨模态领域间泛化能力可迁移的基础上的)。因此,考虑到未来AGI这种更强的通用性以及在跨领域的超凡泛化与推理能力构建上,也许这也是为什么作者当时要考虑将多种不同模型以及背后所采用的不同训练机制或模型结构进行一番探究分析的原因,用以尝试探寻或论证通往AGI的一种可能路径,当然也是此篇文章撰写的其中缘由之一。

2、鉴于LLM与RL两者间的差异化能力考量,业内不少的思路尝试将两种方法结合在一起,但结合后要么看着不是很巧妙,要不就是看起来很僵硬,总感觉像是一个过渡性的结合,并且看起来并没有以终为始,也不是原生的思想与方法的融合,因此想要尝试探寻一下两种学习方法是否能更巧妙的相互结合与统一。

当前业内产业界或学术界均在逐步探索对于LLM采用强化学习思想进行其推理能力的延展,包括「上篇」中提到的Algorithm Distillation所运用的思想和方法,基于各种XoT思想的Agent或Muti-Agent框架,包括一些基于Agent框架思想下的复杂场景化模型优化的尝试,如Google之前推出的AMIE学习框架再到Med-Gemini、前不久的清华大学AI医院小镇(论文地址:https://arxiv.org/pdf/2405.02957)以及近期MIT提出的基于博弈论思想改进提升LLM生成能力准确性与内部一致性的尝试(论文地址:https://openreview.net/forum?id=n9xeGcI4Yg),甚至之前OpenAI传的神神秘秘的Q*项目。

在这里,除了我们不可知的Q*之外,其它上述思想或方法均是对LLM在某个特定场景的深度推理能力探索的一撇,通过以各种XoT规划形式搭建起的Agent框架,来完成复杂任务的推理过程或用于构建后续模型持续进行过程奖励学习的SFT数据集。然而当前作者认为在模型训练机制搭建、推理框架模式以及对应的数据生成模拟构造上在通用性与普适性上并没有形成统一、完备、高效的范式,同时尤其针对后续的模型隐状态的持续强化训练策略并没有相关完备的通用场景验证或技术理论支撑(对比当初ChatGPT论文发布之初相对简单、清晰的Pre-traning→SFT→RLHF模型生产路径)。

因此,在「中篇」里,针对LLM与RL的融合章节中,针对此部分尝试性的进行了一些自己的思考和探索,希望未来能够持续探索并找到能构建出一个全局的认知流形挖掘模式,基于容纳了RL思想的深度探索推理学习范式,以LLM通用预训练的方式继续将scaling law进行下去..

3、探究思维系统的两种推理模式:系统Ⅰ(快思考)和系统Ⅱ(慢思考)在推理过程的本质普遍性及表象差异性,以及快慢思考是否与两类学习方法(LLM/RL)存在着某种关联?Agent在其中的内涵与定位是什么?

这部分可以部分参考上述内容,首先作者在本篇文章关于system1·快思考与system2·慢思考上,认为两种思考模式或是推理模式对于不管是人类大脑还是机器大脑,在某种底层逻辑上本质是相同的,如不管是在底层所采的模型结构或数学变换在不同计算域的训练拟合、还是不同激活函数最终的损失目标对齐上,甚至对模型的训练或采用不同任务类型与训练范式上所呈现的底层tokenize数据流形分布表象差异和本质统一上,均存在着本质上的同构(这里的同构取自群论中两个群在底层数学运算结构上所具有的同构性)。

而这里的LLM与RL即是所对应的上述两种不同类型的模型算法与任务训练范式。Agent则可看成为某个复杂·认知流形中的衔接上下游不同流行分布的解析者、转换者、代理者或信号传递与激活者。

4、Prompt对于LLM来说其意义是什么,Prompt Learning给我们的更深一层的提示是什么?

这里作者希望能够将Prompt置身于一个更全局的视角来看待:将Prompt视为在真实世界中认知流形所映射表征为数据流形分布中时空结构的前一部分,即可以将其看待为任何领域时空下的前置流形分布(或者称之为对下游流形分布的前置条件),需要关注于这种“前置”作为整体数据流形或认知流形的组成与影响,其控制着整体全局流形的分布与轨迹。

另外一方面,从整体模型推理全局视角来看,对于Xn+M>Yn来说,Xn+Yn可作为整体广义层面的认知数据流形分布来看待,其中M作为模型节点,用于对齐衔接Xn到Yn的流形分布(在现实中人们的认知不可避免的总是进行着通过Xn+M对Yn进行着预测或判断)。在本篇文章中我们之前将目光更多聚焦在M之后的Yn,并探索Yn在生成的内容上所体现出在system1与system2间不同复杂流形分布在复杂推理模式上的差异和本质上的等价(当然这里的探索初衷是希望能够合理、平滑的构建出其中的M,以对齐衔接system1与system2内部和之间的不同的复杂信息结构)。而反观对于Xn确很少讨论,作者认为其本身应与Yn有着同等的研究探索价值,如在当下热度比较高的长文本LLM推理的运用上。

而我想这里的潜在探索也不仅仅局限于上下文长文本,而应更深入的聚焦于Xn自身所有蕴含的复杂信息结构或其流形分布(确切地说所蕴含着的类似于system1和system2那种复杂推理思想与综合决策状态下丰富而繁杂的信息结构或分布流形)的探索与研究上,同时,需考虑在与具备同等复杂度的Yn(生成输出侧)之间相互作用于不同时空或不同模态的鬼魅般的纠缠上(如Prompt工程,step by step提示,甚至是以XOT为思想的Agent延伸),两者间与M的关系一定存在着更深邃的内涵联系。而我相信随着继续对其进行深入的研究与探索,也能在未来的模型算法(M)所采用的网络结构或数学方法进一步改进创新提供响应的理论依据。如针对不同模态、时空结构所表征的真实世界所采用的更为适配的模型结构或算法,如Sora的Diffusion与LLM的Transformer。

5、模型中知识或模式的迁移及泛化能力代表了什么?

相信大家对泛化性作为大语言模型LLM的重要能力已经非常了解了 - 这也是当前LLM体现出令人惊呼的通用涌现能力的基础前提,这里不再过多赘述,但作者仍希望大家对泛化能力本身结合领域问题进行更发散甚至是更激进一些的思考延展。比如泛化能力是否具备天然分层的特性?泛化本身在真实世界各领域中是否存在一定的结构特异性等等,即不同领域间的进一步泛化可能。我想在掌握了这方面对于泛化本身更深层次的了解或者仅仅是直觉上的感知也好,在未来针对更复杂的认知模式探索过程中对于模型所采用的训练模式、学习任务、计算方法等将会有着非常重要的指导作用。

6、LLM的路径是否能达到一个真正意义上的世界模型WM并成为AGI甚至是ASI吗?WHY?HOW?

作者认为:LLM所采用的自回归学习方式为大规模的非监督预训练提供了非常适合的训练模式,同时此种训练模式与自然语言这种作为人类上千年所创造并沿用至今的结构灵活、语义丰富的符号化表征工具是高度匹配且自适的(当然这里大概率是基于人类基于构筑的语言学在充分的理解自然语言的结构特征与语义表达的特性基础上,洞察并创造的对应训练模式,如早期的word2vec,CBOW,Skip Gram..的尝试及运用),而且作为当前人类所记录、积累的全网文本数据或线下纸质记录文字所覆盖的内容广度在当下LLM演进的窗口下与scaling law又是天然契合的。但我们仍需要清醒的认识自然语言本身对真实物理世界中所囊括蕴含的事物描述或表征的局限性,如抽象的代数运算、几何空间构型、形式化的逻辑推理与证明、再到多模态的这些世界表征。

这里针对Sora这种针对CV视觉模态的模型有必要跟大家进行一下说明:我们知道Sora是采用的DiT的模型结构并采用类似的预训练方法完成的模型训练,并在其中采用了petches作为语言符号的token来进行嵌入表征。而之所以采用类似LLM预训练方法,作者认为其CV数据与语言文本数据在其时空结构上对于模型训练任务来说也许在某种程度的本质上是同构的,且人类也积累了丰富的CV数据。因此人们能够相对容易的将LLM的很多训练方法和技巧通过某种调整优化或变化快速的移植到Sora训练的过程当中来。而涉及到复杂的推理范畴,其内部所蕴含的结构或路径或构象也许与人类现存的自然语言文本记录在所表达的在认知维度的时空结构上存在着很大不同,但是否在某种程度上也存在本质上的同构呢?因此才有了作者将LLM与RL思想相融合统一探索的想法。

7、AI4S是否能带来科学突破?不光是改变研究范式,甚至是触达到探索知识的另一片天空之城?

作者认为是一定的且意义非凡的,可参考后面所列举的几个有代表性的例子。

下面为大伙举几个近期在产业界以及学术界发生的在一些小故事和小事件,以进一步阐释全篇文章对于LLM与RL未来的融合之路的前瞻性考虑,并展望未来可能在通往AGI路途中的AI4S上的探索与可能:

  • 精神的助产士 · 苏格拉底式问答法
  • 华人数学家陶哲轩在天空之城的探索模式
  • 欧几里德的助手 · AI4S之AlphaGeometry
  • "KAN" AI 4 Science?
  • 为什么说这次AlphaFold3再次意义非凡?
  • Q*猜想
  • P vs. NP 的五十年

精神的助产士 · 苏格拉底式问答法

苏格拉底(约公元前470年—公元前399年)是古希腊雅典时代的一位杰出哲学家。他没有留下任何书面作品,但由于他的对话法和批判性思考,苏格拉底被广泛认为是西方哲学传统的奠基人。苏格拉底最著名的贡献是他的「苏格拉底式问答法」

苏格拉底通过一系列精心设计的提问和反问,引导对话者从自身的经验和逻辑中寻找答案,而不是直接给出答案。通过对话,苏格拉底揭示了人们信念中的矛盾和不一致之处,迫使对话者重新考虑他们的立场和观点。苏格拉底经常询问如“仁义是什么?”“勇敢是什么?”等本质性问题,追求对概念的明确和普遍有效的定义。

同时,苏格拉底式问答法强调理性思考和对话在发现真理和提升个人道德修养中的作用,它不仅是探索哲学问题的工具,也成为了教育和法律实践中重要的思考和讨论方法。

如:苏格拉底在教学生获得某种概念时,不是把这种概念直接告诉学生,而是先向学生提出问题,让学生回答,如果学生回答错了,他也不直接纠正,而是提出另外的问题引导学生思考,从而一步一步得出正确的结论。这种问答分为三步:第一步称为苏格拉底讽刺,他认为这是使人变得聪明的一个必要的步骤,因为除非一个人很谦逊“自知其无知”,否则他不可能学到真知。第二步叫定义,在问答中经过反复诘难和归纳,从而得出明确的定义和概念,第三步叫助产术,引导学生自己进行思索,自己得出结论.。在现实实践当中,我们会看到很多这样的追问模式往往能够对问题进行有效解决,并在其中还能迸发出创新的火花以及对问题本质深邃而抽象的理解。

那么,我们不禁疑惑,这种「苏格拉底式问答法」在其中到底发挥了什么样的魔法力量,能够以如此的方式在过程当中去解决问题,而通过这种方法针对某类领域问题的最终解决真的是实际可行的吗?

验证论文Ⅰ:利用苏格拉底提问模拟器更好地蒸馏ChatGPT对话能力

为了验证这一方式,香港中文大学(深圳)和深圳市大数据研究院所在的王本友教授团队,通过在高质量的人机对话数据集 ShareGPT 上,仅计算人类提问的损失来反转学习目标,基于 LLaMA 基座,全微调训练出一个名为 “Socratic(苏格拉底的信徒)”的用户模拟器(也就是上文中的 Anuciv)。随后,通过迭代调用 Socratic 与 ChatGPT 获得了高度类人的人机对话数据集 SocraticChat,并在该数据集上训练出表现看似优越的助手模型 PlatoLM(论文地址:https://arxiv.org/abs/2308.11534v4

文章思路利用苏格拉底式提问采取老师教学生这个经典方法,通过连续提问来充分激发学生的能力,促进学生的思考。在大模型训练的场景是,学习一个用户模拟器专门去给 ChatGPT/GPT4 助手模型连续提问,通过学习助手模型的输出来高效蒸馏一个开源模型。在苏格拉底式提问中,苏格拉底的下一轮问题可以比上一轮更复杂更具体或者联想到更高层次,以此充分帮助学生思考并做出更好的回复。

该论文提出的模拟器训练方法,可以使用户模拟器在基于上下文背景下持续追问,与在无上下文背景下自主提问之间灵活切换,这使其不仅具有良好的迁移领域的能力,将任何单轮对话扩展成多轮形式,还能够扩展 ShareGPT 数据集的规模和多样性。

此外,论文发现,Socratic 提出的问题的复杂性可以随着多轮对话的进行循序渐进地提高,并由此激发 ChatGPT 自动 ICL 的能力,这与苏格拉底式质疑——通过提问者由浅入深地提问来启发回答者思考的过程——不谋而合。

论文观点认为经过人类高超的 prompting 技术微调知识丰富的 llama backbone 后的高度类人的模拟器 Socratic 可以类比为苏格拉底,模拟器与 ChatGPT 之间的对话所形成的数据集 SocraticChat 可以类比为对话录(柏拉图所记载的苏格拉底启发人类思考的对话体文集),学习 ChatGPT 的回答的助手模型 PlatoLM 可以类比为柏拉图,整个 pipeline 可以类比为苏格拉底式教学。

具体的,基于苏格拉底式质疑的用户模拟器的教学方法论分为三步,如方法论对比图所示,他们的第一步与第三步是对称的。

1. 训练用户模拟器
与训练助手模型相反,训练过程中遮蔽了用户的提问,计算其损失,修改学习目标为人类的提问,并基于 llama 基座,使用与训练助手模型对偶的提示模板,微调模型 Socratic。在切割 ShareGPT 数据集中超过 2048 最大上下文长度的多轮对话样本时,使切割后的 segments 以 gpt 开头。最终 human 和 gpt 开头的多轮对话样本的分布大致平衡,这使模拟器可以在基于上下文背景下持续追问,与在无上下文信息下自主提问之间灵活切换。
2. 合成对话SocraticChat
在推理时,论文引入了两种教学方法,分别为自由模式和种子模式的教学。对于前者,苏格拉底可以无需任何上下文作为引导,自由提出质疑;而种子模式则是指,以其他数据集的单轮对话作为种子,继续追问。
此外,论文指出,当迭代调用用户模拟器和 ChatGPT API 时,会不可避免地出现何时终止对话的问题。由于 ShareGPT 数据集的特殊性 —— 即无从判断一个对话的结束是否为一个话题的结束 —— 论文采用了硬控制的方法,换句话说,当上下文长度超过最大长度 2048 后,结束对话。
3. 训练助手模型PlatoLM
与大多数训练助手模型的方法一致,论文遮蔽了助手的回答,计算损失,并基于 llama 基座微调模型。

实验结果

为了评估该问答范式的优越性,论文分别根据模拟器的教学方式,对基线和消融的结果模型和各模拟器合成的数据集进行了评估:

对于基线模型,首先保证使用同等数量的样本(10K)、同样的训练方式(SFT)、同样的基座模型(llama1)进行评估,结果证明:自由模式的PlatoLM在单轮 benchmark(Vicuna-Bench、Alpaca-Eval)上超越了基线模型(Vicuna、Baize、UltraLM),在多轮 benchmark——MT-Bench 的双评中超越了所有基线模型,在单评中仅次于 Vicuna(由于 MT-bench 对于分差较大的 domain 采用了惩罚机制)。人评与双评有较高的一致性。
之后,论文使用 ScoraticChat 的全部数据集,基于 llama2 进行训练,在 MT-bench 和 Alpaca-Eval benchmark 上,以更少的样本量(50K)、更短的上下文长度(2048)超越了同等规模的基线模型,最终在两个榜单的 7B 规模模型中排名第一(现在第二),在 Alpaca-Eval 榜单中,甚至打败了 GPT3.5 和一些 13B 模型(LLaMA2 Chat 13B 等)。
对于消融模型,他们以对话两端分别为人机、人人、机机的数据集的单轮对话 ShareGPT、Dolly、Evol-instruct 作为种子,引导模拟器,发现经过引导的模拟器的后续提问具有对应数据集域的特性,这证明了模拟器 Socratic 具有可迁移性。
此外,论文也发现,尽管 Evol-instruct 的种子问题为人类所提出,但经过 WizardLM 多轮的改写后,提问的类人性大大降低,因此以 Evol-instruct 引导的 PlatoLM 表现不如经过 Dolly 和 ShareGPT 引导的 PlatoLM。
最后,论文指出,尽管种子模式的模拟器 Scoratic 容易受限于种子的规模,自由模式的模拟器不受该限制,但种子的规模问题可以通过 ensemble 来解决。

验证论文Ⅱ:GPT-4在97轮对话中探索世界难题,给出P≠NP结论

在本篇的最后一部分,还将会重点讨论P/NP问题,这里意在引出采用 苏格拉底问答推理框架探索复杂问题的例证。

对于身处科研领域的人来说,或多或少的都听到过 P/NP 问题,该问题被克雷数学研究所收录在千禧年大奖难题中,里面有七大难题,大家熟知的庞加莱猜想、黎曼假设等都包含在内。P/NP 问题最早在 1971 年由史提芬・古克(Stephen A. Cook)和列昂尼德・列文分别提出。多年以来,很多人都投入到该问题的研究中。但有人表示 P=NP 的解决保守估计可能还需要 100 年的时间。

近年来,不乏有人声称证明了 P 等于或者不等于 NP,但证明过程都存在错误。到目前为止,还没有人能够回答这个问题。现在,随着 AI 技术的发展,尤其是这一年来大语言模型的快速迭代,有研究开始尝试使用 AI 技术来解决这些世界难题。

来自微软研究院、北京大学、北航等机构的研究者提出使用大语言模型 (LLM) 来增强和加速对 P versus NP 问题的研究。具体来说,论文提出了一个能使 LLM 进行深入思考并解决复杂问题的通用框架:苏格拉底推理(Socratic reasoning)。基于该框架,LLM 可以进行递归地发现、解决并整合问题,通过对 P vs. NP 问题的试点研究表明,GPT-4 成功地生成了一个证明模式,并在 97 轮对话回合中进行了严格的推理,得出「P≠ NP」的结论,这与(Xu 和 Zhou,2023)结论一致 。

论文地址:https://arxiv.org/pdf/2309.05689.pdf

本篇论文所采用的核心验证思想为:

引入一个名为「苏格拉底推理」的框架,鼓励 LLM 使用演绎、转换、分解等模式来激发批判性思维。具体模型选择GPT-4,选题为:理论计算机科学中的 P 与 NP 问题。其意义意在展示通过 GPT-4 等 LLM 推断新知识并与人类合作探索复杂专家级问题的潜在能力。

论文作者之所以将框架命名为「苏格拉底推理」,是受到了古希腊哲学家苏格拉底的启发。苏格拉底曾经说过:「我无法教给任何人任何东西。我只能让他们思考。」 而该框架整体设计思路也是这样的,这是一种通用的问题解决框架,允许 LLM 在广泛的解决方案空间中导航并有效地得出答案。

如下表所示,「苏格拉底推理」有五种提示模式:演绎(deduction)、变换(transformation)、分解(decomposition)、验证(verification)、融合(integration)。这些模式被用来发现新的见解和观点,将复杂的问题分解成子问题或小步骤,并通过挑战响应答案来进行自我改进。

在较小的问题(atomic problem)上,LLM 能够直接给出推理结果,这时采用演绎模式(例如提示语为让我们一步一步思考……)来指导 LLM 直接得出结论,即 COT..

对于更加复杂的问题,本文首先要求 LLM 将问题转化成一个新问题或将其分解为几个子问题。然后递归地执行这些模式,直到达到原子问题,即 Agent规划能力..

当产生新的问题或得出新的结论时,采用验证模式并利用 LLM 的自我评判能力进行验证和完善,即 Agent反思能力..

最后,融合模式要求 LLM 根据子问题的结果综合结论,在次过程中,激励 LLM 通过一系列对话递归地继续上述过程,直到解决目标问题。

下图为「苏格拉底推理」中用于解决 P vs. NP 问题的对话示例。案例研究中使用了 GPT-4 API,此外,本文还根据轮次索引对流程进行排序。

探索过程中,本文引入了五个不同的角色(例如,精通概率论的数学家)作为辅助证明者。完成这项实验总共进行了 97 轮对话,分为前 14 论对话和后 83 轮对话,即 Muti-Agent...


通过上述两篇论文,我们看到,通过构建苏格拉底式问答框架或推理模式,我们似乎能够进一步激发LLM在复杂推理甚至是未知科学领域的深度探索上令人难以想象的潜能,而这背后的缘由以及为我们今后如何能够更有意义的运用LLM并实现更大家的价值是值得我们每一位同学深入思考的。

当然,我们看到,上述论文中(因为是去年相对早期发表的论文)的相关技术概念包含当下比较成熟的Prompt工程、COT、Agent等技术和思想,但我想对于这些技术的运用和思想的边界不应局限于当下,其蕴含的更本质的内涵以及所能发挥出的价值需要进一步被大家持续探索和挖掘,如产业创新实践上对于构建未来模型自主端到端的复杂推理能力(猜想基于Q*方法训练的GPT-5在任务&数据的构造以及训练方法上的创新),再如在学术探索上对于当下LLM基于Prompt、COT、Agent、systemⅠ&Ⅱ、RL等这些技术和思想其理论的本质探寻。

正如作者在本篇文章的「上、中篇」中,尝试统一systemⅠ与systemⅡ的认知推理模式,建立认知流行分布的统一框架思想用于阐释当前LLM及未来可扩展的通往AGI的认知范式,再到阐释采用可微多项式方程去模拟、逼近真实物理世界所呈现的世界模型&世界模拟器的数学本质。

苏格拉底式的交互式prompt给出的模型持续探索的意义,这里似乎是想给大家说明一下系统二·慢思考与苏格拉底的追问模式似乎有着一些底层的联系。

上述俩篇paper也在尝试通过以苏格拉底提问的方式与LLMs进行持续交互并探寻问题的解决方案或用于科学洞察与发现,为运用LLMs解决科学问题提供了一定的启发性。

大家捎带也推荐给大家阅读一本书《苏格拉底的申辩》,非常有意思和内涵的一本书,罗翔老师也重磅推荐过的。

华人数学家陶哲轩在天空之城的探索模式

去年7夏天,一篇加州理工和 MIT 研究者用 ChatGPT 证明数学定理的论文爆火,在数学圈引发了极大关注。

英伟达首席科学家 Jim Fan 激动转发,称 AI 数学 Copilot 已经到来,下一个发现新定理的,就是全自动 AI 数学家了!纽约时报近日也发文,称数学家们做好准备,AI 将在十年内赶上甚至超过最优秀的人类数学家,而陶哲轩本人,也转发了此文。

去年年底,陶哲轩等人曾用 Lean(一款交互式定理证明器,也是一门编程语言)形式化了他们的一篇论文。这篇论文是对多项式 Freiman-Ruzsa 猜想的一个版本的证明,于去年 11 月发布在 arXiv 上。在编写 Lean 语言代码的时候,陶哲轩还借助了 AI 编程助手 Copilot。该事件引起数学界和人工智能界的广泛关注。

在今年二月,加州大学洛杉矶分校理论与应用数学研究所,曾举行了一场关于「机器辅助证明」的研讨会,研讨会的主要组织者,就是 2006 年的菲尔兹奖得主、在 UCLA 任职的数学家陶哲轩。他指出,用 AI 辅助数学证明,其实是非常值得关注的现象。

直到最近几年,数学家才开始担心 AI 的潜在威胁,无论是 AI 对于数学美学的破坏,还是对于数学家本身的威胁。而杰出的社区成员们,正在把这些问题摆上台面,开始探索如何「打破禁忌」。

2000 多年来,欧几里得的文本一直是数学论证和推理的范式,欧几里得以近乎诗意的「定义」开始,在此基础上建立了当时的数学 —— 使用基本概念、定义和先前的定理,每个连续的步骤都「清楚地遵循」以前的步骤,以这样一种方式证明事物,即公理化系统。

但是到 20 世纪以后,数学家们不愿意再将数学建立在这种直观的几何基础上了,相反,他们开发了正式的系统,这个系统中有着精确的符号表示和机械的规则。

早期,开源证明助手系统 Lean 在发布初已经引发了大量关注,Lean 使用的是自动推理,由老式的 AI GOFAI 提供支持,这是一个受逻辑启发的象征式 AI。

关于Lean,有兴趣的读者可以去网上自行查阅相关工具使用的说明以及试用,不过最好大家还是先提前了解学习一下数学形式化证明相关的领域知识,当然还有其它类似的形式化语言如Isabelle,Metamath等..

随后,去年底,陶哲轩成功地用AI工具完成了形式化多项式Freiman-Ruzsa猜想证明过程的工作。他再次呼吁数学研究者学会正确利用AI工具。陶哲轩表示,在整个团队中,自己贡献的代码大概只有5%。这个结果很鼓舞人心,因为这意味着数学家即使不具备Lean编程技能,也能领导Lean的形式化项目。

KeyPoint:
  • 陶哲轩成功应用AI工具形式化多项式Freiman-Ruzsa猜想的证明,引起数学界广泛关注。
  • 他详细记录了使用Blueprint在Lean4中形式化证明的过程,强调了正确使用AI工具的重要性。
  • 利用Blueprint工具,陶哲轩团队分解证明过程,通过众多贡献者并行工作成功形式化了PFR猜想。
  • 陶哲轩认为形式化证明的主流化或创造既人类可读又机器可解的证明,将数学演变成一种高效的编程。
  • 这一成果引发了对数学研究未来的讨论,一些人认为形式化将成为主流数学中的关键趋势,但陶哲轩提醒不要削弱理解证明的重要性。

同样,这也是去年我认为非常有启发意义的一件事情,试想一下,当LLMs或RL在充分掌握并运用数学的形式化证明体系后,不光是对于AI领域,是否也会再次迎来数学的春天呢?

直到上个月中,很多围绕当前LLMs的数学探索工作已经在进行了,网上这方面的公开的思想发表和学术上的动作也很多。在陶哲轩的启发下,越来越多的数学家开始尝试利用人工智能进行数学探索。这次,他们瞄准的目标是世界十大最顶尖数学难题之一的费马大定理。

在 300 多年里,数学家们一直在努力,接力证明费马大定理。直到 1995 年,美国普林斯顿大学的 Andrew Wiles 教授经过 8 年的孤军奋战,终于用 130 页长的篇幅完成了证明。Wiles 也成为整个数学界的英雄。

既然费马大定理已经被证明了,数学家还能用 AI 做什么呢?

答案是:形式化它的证明。

数学的形式化通常指的是使用严格的形式语言(如逻辑和集合论)来表述数学对象、结构、定理和证明,使其能够在计算机上进行表示、验证和操作,从而保证数学内容的准确性和一致性。当时,Lean 技术开源社区最重要的推广者、伦敦帝国理工学院的 Kevin Buzzard 表示:「从根本上来说,显而易见的是,当你将某些东西数字化时,你就可以以新的方式使用它。我们将把数学数字化,这会让数学变得更好。」这位 Buzzard 教授,就是最近宣称要形式化费马大定理证明的数学家,他所用的工具也是 Lean。

数学的形式化,即将纸上的数学转换为能够理解定理和证明概念的计算机编程语言的艺术。这些编程语言,也称为交互式定理证明器(ITP),已经存在了数十年。然而,近年来,这一领域似乎吸引了数学界的一部分关注。我们已经见证了多个研究数学形式化的例子,其中最新的是陶哲轩等人对多项式 Freiman—Ruzsa 猜想证明的形式化。这篇 2023 年的突破性论文在短短三周内就在 Lean 中完成了形式化。这样的成功案例可能会让旁观者认为,像 Lean 这样的 ITP 现在已经准备好形式化所有现代数学了。

事实上,数论在这一方面的「滞后」是 Buzzard 启动 FLT 当代证明形式化的主要动机之一。在项目完成之前,Lean 将能够理解自守形式(一类特别的复变量函数)和表示、伽罗瓦表示、潜在自守性、模性提升定理、代数簇的算术、类域论、算术对偶定理、志村簇等现代代数数论中使用的概念。在 Buzzard 看来,有了这些做基础,将他自己专业领域正在发生的事情形式化将不再是科幻小说。

那么,为什么要这么做呢?Buzzard 解释说,「如果我们相信一些计算机科学家的话,人工智能的指数级增长终将使计算机能够帮助数学家进行研究。这样的工作可以帮助计算机理解我们在现代数学研究中正在做的事情。」

我想,这也是我想在本篇中引入此章节的目的,甚至曾经的AI 4 Math在某种程度上冥冥之中在指引着我完成这篇文章的写作,因为在这个抽象而又深邃的领域中蕴含的思想以及可能也许真的是无限且优美的(因为相比于AlphaGo但它的 action space 和 episode 长度都要大得多)。可以说,AI 4 Math 是一个完美的AI练武场,未来我们需要用到各种最前沿的技术才有希望解决它,所以也很有可能在这些方向催生出新的想法和技术。这个珍贵的练武场,是现在日趋浮躁的AI社区非常需要的。

也许,AI for Math 就是下一个 AlphaGoChatGPT,并且我想难度和重要性都比这两者要高出好几个量级!而这种级别的问题,既需要强大的强化学习技术,又需要强大的语言模型,所以最终其中通往AGI的可能路途就是RL×LLM!

试想一下:呈现于数学形式化世界中的流行推理轨迹是长成什么样子的呢?我想与AlphaGO的围棋着子轨迹和LLM的tokenzine轨迹还是有着很大不同吧!


欧几里德的助手 · AI4S之AlphaGeometry

这里再插播一个「AlphaGeometry」,虽然其解决的平面几何问题是采用的是几十年前就可以达到100%正确率问题的符号方法(如吴方法),看起来并不能算神经网络带来的质的突破,但将其与当下LLM的结合确实能够朝着自主形式化证明路径进一步延续和进化。

这是DeepMind去年底发布的又一个Alpha系列·AlphaGeometry,其创新展示了一种神经符号方法,通过从头开始的大规模探索来证明定理,避免了对人工注释的证明示例和人工策划的问题陈述的需求。在纯合成数据上生成和训练语言模型的方法为面临相同数据稀缺问题的数学领域提供了一个通用的指导框架。

我们看到,这即是一种尝试通过LLMs与RL构造环境并持续探索过程学习在平面几何上的路径,其提出了一种使用合成数据进行定理证明的替代方法,从而避免了翻译人工提供的证明示例的需要,在其中的数据合成方面,完全由高效的符号推导引擎 DD + AR 可以达到的推导步骤组成,并应用合成数据进行后LLMs预训练。

有兴趣的读者也可以直接搜索精度下里面的内容,也许会收到非常不一样的额外启发,不过也需要对形式化证明有较深刻的认知。


"KAN" AI 4 Science?

五一假期期间,来自MIT、加州理工、东北大学等机构的团队发布了一个全新的神经网络结构 · Kolmogorov-Arnold Networks (KAN),而之所以说是“全新的”,主要是其打破了长期统治于DNN(深度学习)领域长达数十年之久的传统MLP(多层感知器)的基础架构 即 基于静态激活函数的神经网络结构。具体的,研究人员对MLP做了一个简单的改变,即将原可学习的激活函数从节点(神经元)迁移到边(权重)上,并且建立可学习的激活函数以区别于传统神经元节点上固定的激活函数..

论文地址:https://arxiv.org/html/2404.19756v1
PDF:https://arxiv.org/pdf/2404.19756v1

正如,KAN一作小哥Ziming在知乎上受到来自国内五一假期各种因扎墩儿人满为患的景点和高速一日游的网民富有情绪化的讨论(自己编的)所点评回复的那样:

“看到了好多大家的夸奖和批评(知乎上批评居多哈哈),受宠若惊。
我设计网络和编程的时候,脑子里面想的都是数学物理的应用,所以模块化/效率等等就没有太怎么考虑,请大家多多包涵。然后也没有想到AI/ML大家这么关注。我的目标受众本来是做科学发现的群体,比较小众的。大家还是理性看待吧,什么是公众号的噱头什么真的只有自己试了才知道。欢迎大家多多尝试,探索KAN的边界在哪里,它和MLP的关系是什么,存不存在更大的框架可以包含两者。KAN/MLP肯定是各有优缺点的,看应用场景了。另外,我的默认参数都是我在文章的数学物理场景的例子中调的,不一定可以直接迁移到其它场景,可能需要仔细调调,尤其是优化部分。当然也有可能其它场景(比如大规模计算),KAN现阶段就是不如MLP合适。KAN更适合高精度和可解释的计算和科学发现。了解到大家的负面结果我也会很开心,因为能让我更好理解KAN的局限。理解大家喷喷,但也更希望大家去GitHub提提有建设性的建议。”

ps:当天我也理性的加入了有关KAN的讨论,有可能是出于理性又或者是在评论中小挺了下小哥,后续也跟小哥在知乎上进行了一些小的互动并点赞了当初发表的一篇文章

同时,KAN一经推出便引爆了整个AI圈,短短几天就在github上获得了10k以上的stars。各路大神蜂拥而至,对KAN做出多种改进,提出了EfficientKAN、FourierKAN,甚至Kansformer等全新架构。那么KAN究竟是什么,它有哪些独特价值,它对未来AI发展又有哪些启发呢?

最近几周KAN的热度逐渐褪去,大家也可以静下心来仔细学习KAN的原理,去理解KAN与MLP更多背后本质的一些问题,从数学原理、模型性能、甚至哲学意义层面对KAN的价值进行了深入解析:

如原论文中所描述,KAN是一种全新的神经网络架构,它与传统的MLP架构不同,能够用更少的参数量在Science领域取得惊人的表现,并且具备可解释性,有望成为深度学习模型发展的一个重要方向。运用KAN,我们不仅能够在函数拟合、偏微分方程求解(PDE)上取得不错的成果,甚至能够解决拓扑理论中的Knot Theory、处理凝聚态物理中的Anderson Localization问题。

KAN的数学原理:KART定理

KAN的全称是Kolmogorov–Arnold Network,致敬了两位伟大的已故数学家,其背后的核心思想是Kolmogorov–Arnold表示定理,即KART(Kolmogorov–Arnold Representation Theorem)。

KART的核心思想是:对于任何一个多元连续函数,都能够表示为有限个单变量函数和加法的组合。

数学定理读起来比较拗口,把它图示化出来可解释为:

假设有一个多元连续函数y=f(x1,x2),它可以表达为一个有着2个input(x1和x2)、一个output(y)、以及5个隐藏层神经元的Kolmogorov Network。隐藏层神经元数量为2n+1=5,这里的n指的是input变量的个数。
对于第一个神经元,它接收到两个branch的信号,分别是φ1,1(x1)和φ1,2(x2),这里的φ(xi)是xi的一元函数。把φ1,1(x1)和φ1,2(x2)简单相加,就得到第一个神经元的取值。
以此类推,第2-5个神经元也是如此,这是第一层神经元取值的计算方法。
为了计算第二层神经元的结果,我们需要对第一层中的每个神经元构造一元函数(Φ1到Φ5),然后相加。
这里无论是第一层的函数(小φ)还是第二层的函数(大Φ),都是一元函数,所以可以用曲线将其可视化的表达出来。

至此,我们将f(x1,x2)的KART表示,转化成了一个两层KAN网络,并且进行了可视化。

将KAN网络做得更深:Make it deeper!

原始的Kolmogorov Network特指一个2层的,宽度是2n+1的网络(其中n代表输入变量个数),第一层的小φ被称为内部函数,第二层的大Φ被称为外部函数。

这里我们可以对内部函数和外部函数进行抽象,它们都是KAN Layer,其中小φ是一个5×2的KAN Layer,大Φ是一个1×5的KAN Layer。

在这个基础之上,我们就可以把KAN网络建设得更深了,比如下图是一个三层的KAN:

这里有一个关键的问题:如果原始的两层Kolmogorov Network就可以表示所有的光滑函数,那为什么还要把网络建深呢?

这是因为原始的两层Kolmogorov Network中,并没有约束激活函数必须为光滑函数,因此有时会求解出一些不光滑的,甚至有分形行为的病态激活函数来表达目标函数。如果你用不光滑的函数表达了目标函数,其实是没有现实意义的,不具备预测价值。

举个例子,针对这样一个目标函数,需要三层非线性的组合,才能构造出这个函数。如果用一个两层KAN网络去硬拟合,可能会得到一个没有物理意义的病态解。

通过一个三层KAN网络,可以学习出如下结果,第一层学到了4个二次函数,第二层学到了两个sin函数,第三层学到了一个exp函数,三者通过加法组合,得到了最终的目标函数。

动图封面

KAN背后的核心算法:B-Splines

为了将Kolmogorov-Arnold表示成为一个可以学习的神经网络模型,我们需要将其参数化。论文里用到了B样条函数(B-Splines),即通过多个局域的基函数的线性组合来构成样条。因此,KAN真正需要学习的参数,就是这里基函数前面的系数ci。

B样条函数的好处是可以自由控制resolution。比如这里G=5,意味着有5个interval,是一个比较粗糙的网格。当G=10时便是一个比较精细的网格了。当你有更多的训练数据,想要把模型做的更精确时,你不需要重新训练网络,只需要把网格变得更细一些就可以了。

具体计算B样条函数时,常见用的是Boor Recursion Formula。这个公式表达起来很漂亮很简洁,但计算步骤存在递归性,因此计算效率较低。这也是为什么KAN一经推出,就有大神在Github上发布EfficientKAN、FastKAN等Repo来提升其计算效率的原因。

KAN vs MLP?

KAN和MLP有着千丝万缕的关系。从数学定理方面来看,MLP的背后是万能逼近定理(Universal Approximation Theorem),即对于任意一个连续函数,都可以用一个足够深的神经网络来逼近它。而KAN背后的数学原理是Kolmogorov-Arnold表示定理,即KART。

万能逼近定理和KART这两个表示论有一个很大的区别:

  • 根据万能逼近定理,为了提升模型精度,需要不断提升模型的宽度。如果需要做出一个无穷精度的模型,你需要训练一个无穷宽度的网络。
  • 而KART承诺你可以用一个有限大小的网络来实现无穷精度的模型,但有一个前提,即目标函数可以被严格写成KART的表示。

上图中的(a)和(b)比较了两层的MLP和两层的KAN。

  • 对MLP来说,激活函数是在节点上的,是固定的。权重在边上,是可学的。
  • 对KAN来说,激活函数是在边上的,是可学的。节点上只是一个单纯的加法,把所有input的信号加起来而已。

KAN在数学和物理领域的价值

我们来看看原论文KAN的性能表现:

首先,对于Symbolic Formula来说,KAN的Scaling效率比MLP高了不少。

第二,在函偏微分方程求解上,KAN也比MLP更加准确。

第三,与MLP不同,KAN天然具备可解释性,并且没有灾难性遗忘的风险。

第四,人类可以与KAN进行交互,并且向其注入先验知识,从而训练出更好的模型。

这一点可能并不直观,举个例子说明:

比如我们要预测的函数是esin(πx)+y^2。
首先我们通过KAN训练出一个比较稀疏的网络,然后prune成一个更小的网络,这时人类科学家就可以介入。
我们发现φ1长得像sin函数,于是可以把它固定成sin函数;我们觉得φ2长得像指数函数,也把它固定下来。
一旦我们将函数的structure全部固定下来后,再用KAN网络进行训练,就可以将模型中的各项参数学习到机器精度,得到一个非常准确的模型。

KAN:符号主义和连接主义的桥梁

回顾AI的发展史,人们在符号主义和连接主义之间反复摇摆。

1957年,Frank Rosenblatt发明了感知机(Perceptron),人工智能正式拉开序幕。

但是在1969年,Minsky和Papert写了一本书攻击感知机,因为他们发现感知机无法执行异或操作(XOR),而XOR是计算机领域的基本操作。这本书对Rosenblatt造成了巨大的打击,据推测间接导致其自杀。

然后时间到了1974年,政治经济学教授Paul Werbos发现,当把感知机从单层拓展到多层后,它就可以执行异或操作了。但因为Paul Werbos所处的学术领域比较狭窄,这一发现在当时并没有引起主流学界的轰动。

1975年,Robert Hecht-Nielsen提出KART可以表示为一个层数为2、宽度为2n+1的Network,这就是KAN的雏形。

1988年,George Cybenko提出两层的Kolmogorov Network可以执行异或操作。

但是在1989年,Tomaso Poggio否定了Kolmogorov Network的价值,因为他发现两层的Kolmogorov Network解出的激活函数很不光滑,表达能力差而且没有可解释性。

时间到了2024年,Ziming和Max的研究提出了一种全新的方法,将Kolmogorov Network拓展到多层,能够有效解决激活函数不光滑的问题。

可以说,某种程度上,KAN是一个处于Symbolism和Connectionism之间的存在,有可能成为连接符号主义和连接主义之间的桥梁。

从这个意义上来看,KAN的价值就不只局限于AI for Science了。

比如最近大家在争论Sora到底是不是世界模型,有没有通过海量视频数据学到物理学规律。要回答这个问题,可能我们就需要构建一个同时具备符号主义和连接主义的模型,两个部分各自学习自己擅长的部分。最后我们可以去模型的Symbolism的部分去检验Sora有没有真的学到物理学规律,而不是去看整个Network,因为Connectionism部分是不可解释的。

另外,从哲学的角度看,KAN的背后可以对齐到还原论,而MLP的背后是整体论。为了理解二者的差别,我们可以先了解下事物的内在自由度和外在自由度的问题区别,哲学上如此定义:

比如基本粒子存在诸如“自旋”等内在自由度,而外在自由度指的是基本粒子是如何与其他粒子发生交互的。再比如在社会学中,如何看待一个人。从内在自由度来看,人是由他的品性、品格所决定的,这是internal degrees of freedom。同时你也可以从外在自由度的角度去定义一个人,人是他所有社会关系的总和,这恰恰就是KAN和MLP之间的本质差别。MLP不在意内在自由度,而是重视外部连接,每个神经元内部不需要做精巧的结构设计,而是用固定的激活函数。只要神经元之间的连接足够复杂,就会涌现出智能。

而KAN的逻辑是,我们需要关注内在结构,引入可学的激活函数。在引入内在结构复杂性的同时,KAN在外部连接上只有简单的加法。

因此,在某种程度上,MLP和KAN的背后,反映出的是还原论和整体论之间的差异。还原论(Reductionism)认为,我们最终能够把复杂的世界拆分成基本单元,这些基本单元的内部是复杂的,但是其外部相互作用是简单的。而整体论(Holism)则认为世界是无法拆分的,它work as a whole。

这也从另一个层面说明了为什么KAN在Science领域表现得更好。因为绝大部分科学家,都是基于Reductionism的哲学信仰在解构这个世界。

关于仿生

我们知道,当前的深度神经网络模型,启发自人脑中的神经元结构,Transformer中的Attention机制,也启发自心理学中的注意力分配原理,仿生路线成为了目前AI领域公认的主流方向。

那么在大自然中,是否存在着类似KAN这样的神经网络结构呢?

有趣的是:KAN论文发布后,有生物物理领域的专家提出:MLP更像大脑中的神经元,而KAN更像视网膜中的神经元..


记得在「中篇」 融合RL与LLM思想,探寻世界模型以迈向AGI中,有曾跟大家提及未来AI能力持续的提升与演进除了离不开满足于对数据与算力的scale law之外,网络模型结构的突破将是可能影响AGI发展的另一个关键变量,而算法是模型结构应用的基础,基础数学理论即又是算法的理论基础,包括在SystemⅠ与SystemⅡ的快慢思考中,也对当下LLM所采用的自回归预测推理背后的模型结构所面对SystemⅡ的局限性进行了一些阐释;包括在提及与RL(强化学习)融合再到针对AI4S的探索中,其中在“世界模型的内涵”章节中对不管是World Models还是World Simulators不管是采用“传统数字符号化+形式化表征完成物理世界规律的精准刻画”还是基于“梯度下降在神经参数中隐式学习物理表征通过MLP背后的万能逼近定理(Universal Approximation Theorem)去无限模拟逼近”这两种计算模式的本质探寻..

如今,在模型算法中的底层数学基础层面上,KAN似乎寻找到了另一种更适合于处理数学和物理计算领域问题的数学变换拟合过程或非线性回归精准逼近过程,而这种“适合”是否是某种必然,与论文中所说的这些可能是非光滑甚至是分形的1D 函数在解决数学或物理问题过程中所面临的大多数科学和日常生活中的的函数所对应的光滑性,及稀疏的组合结构的普遍性在其背后有着什么隐秘的联系?我想这都是需要在今后持续在不同任务领域进行实践摸索的..

而就在KAN发表不到10天,刚刚提出了KAN的MIT物理学家Max Tegmark和一左小哥刘子鸣,又有一项重磅研究问世了!团队发现,它们用AI发现了物理学中的新方程,从此,AI很可能被引入物理学研究领域,帮助人类物理学家做出全新的发现。

论文地址:https://arxiv.org/abs/2405.04484
我写的一篇论文解析:"KAN" AI 4 Science?

作者表示:这篇论文并没有解决价值数百万美元的核聚变问题,而是在更简单的设置中,引入一个有前途的概念验证。偏微分方程(PDE)- 可以说是物理学家的面包和黄油,但它们非常罕见,人类科学家很难只用纸笔就能发现。

为此,研究者们推出了一个名为OptPDE的AI系统。使用这个AI,就可以发现新的、从未见过的可积偏微分方程!具体来说,使用了5000个随机初始化的PDE系数值运行OptPDE后,研究者发现了4个可积偏微分方程,其中是一个是已知的,而另外三个是全新的方程。

利用这种首创的机器学习方法,MIT的科学家们为物理学提供了一种全新的研究模式。从此,可以由人类向系统提供领域知识,AI产生希望的假设,然后再由人类进行解释和验证。这就实现了整个物理学发现的闭环。

详细的AI探索发现过程以及其中所采用的创新方法感兴趣的小伙伴可自行参考原论文,这里不再进行针对原论文的详细解析和论述,不过对偏微分方程(PDE)等数学概念不是很熟悉的同学也许需要提前做一些准备,主要思想和过程是采用了先验的一些知识「可积系统在物理学和工程系中发挥着重要作用,然而,它们极其罕见,难以发现,传统中发现可积系统的方法是靠纸笔,它侧重于符号推导,还需要考虑到可能系统和守恒量(CQ)的指数级大搜索空间,效率极低。」,并利用领域限定知识构造训练任务闭环以生成响应洞察,简单来说:

当PDE具有守恒量时,它们是可积的(例如,能量是质量弹簧的一个守恒量)。因此,研究者将OptPDE设计为一个两部分的系统,它可以:

(1)计算任何PDE的守恒量(CQ)数量;

(2)找出使n_CQ最大化的偏微分方程。

因为研究者寻找n_CQ的方法是可微分的,因此要发现新的可积偏微分方程,只需使PDE中的项系数可训练,并通过SGD最大化n_CQ即可。

他们以从u_x => u_xxx^3的项为基础,运行了5000次。研究者发现,他们得到大多数解,都是4个偏微分方程家族的线性组合,其中一个是KdV方程的一种形式,还有3个方程完全是新增的,在文献中并没有记载!由此,研究者确认,这些新出现的可积偏微分方程中,至少具有一个守恒量。也就是,在AI的帮助下,人类科学家发现了一些全新的可积偏微分方程!不过,如果想解释和分析这些发现,还是要靠人类科学家。

这篇论文的发表,也预示着,通过引入的这种人类科学家和AI协作的范式,很可能激励人类物理学家为物理学做出新的发现!


为什么说这次AlphaFold3再次意义非凡?

上上周,谷歌DeepMind重磅发布了AlphaFold 3(AF3),一经推出,也许预示着人类早有一天将冲破「蛋白质宇宙」,触达更广泛的生物微观领域 - 意味着更广泛、更复杂的生物分子尺度可以进行相应结构和功能预测以更深入和普遍的辅助探索生命科学领域,同时这次使用的,还是AI革命最核心的组合架构——Transformer+Diffusion。可以说,在LLM AIGC快速的发展浪潮之下,AF3的发布似乎已经是其AI4S技术路径上的某种必然,其中底层所采用的算法创新或技术突破并没有给大家带来太大的惊艳,但仍然能为生命科学领域的研究范式以及效率的提升带来突破与遐想。

由于该研究以「Accurate structure prediction of biomolecular interactions with AlphaFold 3」为题,于 2024 年 5 月 8 日发布在《Nature》,截止今日(5月10日),Internet各处已经充斥着太多关于论文技术分析以及在生命科学以及生物医药领域的应用解读,因此本篇讲只围绕研究核心内容进行一些技术与应用价值的提炼和总结,并给出作者对于未来不管是"AI 4 LS(Life Sciences)","AI 4 DD(Drug Development)","AI 4 Bio(Biomedical)" 还是 "AI 4 Maths","AI 4 Physics","AI 4 Chemistry" 再到最终统一的AI4S范式的进一步大胆的技术路径的思考与延伸。

下面对AlphaFold 3(AF3)为大家做一些简单的概述,并尝试通过此次AF3的发布,向大伙分享一下自己对未来AI4S的一些思考和灵感启示:↓

算法架构上的创新与应用价值突破

算法架构创新

AlphaFold 3的这些能力来源于其新一代架构和涵盖生命体内所有分子的训练。模型核心是改进版的Evoformer模块——延续了AlphaFold 2采用的深度学习架构。

另外一方面,正如之前所述,AlphaFold 3之所以如此强大,即之所以能够覆盖所有生命分子,正是因为它所采用的新一代架构和训练方式 - 为整个AI世界带来惊艳的Sora「扩散模型 · Diffusion Model」,已经用在了AlphaFold 3的训练中。

在处理输入后,AlphaFold 3使用类似于AI图像生成器的扩散网络生成预测结果。整个过程从一团模糊的原子云开始,经过多个步骤,逐渐去噪,最终形成具体的分子结构。在预测类药分子相互作用方面,AlphaFold 3达到了前所未有的精确度,是真正以全局方式计算整个分子复合物的单一模型。

在生命科学的应用探索方面:

生物分子微观世界的洞悉

每个植物、动物和人类细胞内都有数十亿个分子机器。它们由蛋白质、核酸、糖类等分子组成,但没有一个单独的部分可以单独发挥作用。只有了解它们如何在数百万种组合中相互作用,科学家才能开始更加以一种更加全面和完备的视角真正理解生命的过程。

动图封面

7PNM - 一种普通感冒病毒的突起蛋白(冠状病毒OC43):随着病毒蛋白(蓝色部分)与抗体(绿色)和单糖(黄色)相互作用AlphaFold 3对7PNM的预测结果,与真实结构(灰色)高度吻合。

首先,对于蛋白质与其他分子相互作用的预测,AlphaFold 3相比现有方法至少有50%的提升,对一些重要的相互作用类型,预测精度甚至可以提升100%。

而AlphaFold 3的诞生,则让生物分子领域的研究拓展到了蛋白质之外。如像模型输入一系列分子的信息,AlphaFold 3就能生成它们的3D结构,展示这些分子如何紧密配合。更厉害的是,它不仅能模拟蛋白质、DNA和RNA这样的大型生物分子,还能处理小分子如配体——许多药物都属于这一类。更甚,AlphaFold 3还能模拟这些分子的细微化学修饰,而这些修饰是细胞健康运作的关键,失调情况下对某些疾病有着重要的影响和意义。

因此,不仅是精确预测结构,未来,研究人员可基于AlphaFold 3深入、全局以及更加系统化的视角对包含蛋白质、DNA、RNA以及一些配体、离子和化学修饰的结构进行建模,并辅助研究人员提出大胆而深邃的科学问题,以全新的研究范式加速研究进程。

如:以往通过实验来预测蛋白质结构大概需要四五年时间,且耗资数十万美元。而现在科学家们只需点击几下,就能轻松看到细胞系统的全部复杂性,包括结构、相互作用和修饰。进而了解这些连接如何影响生物功能——比如药物作用、激素产生和维持健康的 DNA 修复过程等。加速药物设计和基因组研究,开启人工智能细胞生物学的新时代,真正地造福人类。

虚拟药物设计的进一步加速

可以说,AlphaFold 3的这种强大的结构化预测与生成能力,进一步的加速了AIDD的发展,即 配体和抗体这些常用的药物的小分子,现在都可以通过AlphaFold 3来进行更平滑的系统化纳入到AIDD的研究范式中来。

AF3具有独特折叠结构的蛋白质的阐释

AF3正确预测了一种新型抑制剂的变构结合模式

AF3正确预测了PORCN与LGK974和WNT3A肽的复合物,为临床阶段分子的抑制功能提供了结构依据(PDB ID 7URD)

AlphaFold3 所涵盖的更广泛的药物设计能力包括可以预测药物中常用的分子,例如配体和抗体,这些分子与蛋白质结合,改变它们在人类健康和疾病中相互作用的方式。同时,AlphaFold3 在预测类药物相互作用方面实现了前所未有的准确性,包括蛋白质与配体的结合以及抗体与其目标蛋白质的结合。

如:AlphaFold3 比 PoseBusters 基准测试中最好的传统方法准确率高 50%,无需输入任何结构信息,这使得 AlphaFold3 成为第一个超越基于物理的生物分子结构预测工具的人工智能系统。预测抗体-蛋白质结合的能力对于理解人类免疫反应的各个方面和新抗体(一类不断增长的治疗方法)的设计至关重要。

因此,未来药物设计的成功率会在这种效率以及范式的进一步突破下大大提高,同时在微观领域能够以更全面和深邃的视角探索疾病靶点发现背后更底层的生物过程与机制,针对现有靶点难以达到的创新方法,未来也有可能在AlphaFold 3的帮助实现突破。

AlphaFold Server:与全世界共享的免费工具

动图封面

此外,谷歌DeepMind团队也会负责任地与世界共享AlphaFold 3的力量。谷歌DeepMind将会推出全球最准确的工具AlphaFold Server,用于预测蛋白质如何在细胞内与其他分子相互作用。这是一个免费平台,允许全球科学家进行非商业性研究使用,包含免费的2亿蛋白质结构数据库。

这个平台,可谓意义重大,实验性的蛋白质结构预测,原本需要花费读个博士学位的时间,以及数十万美元的费用。而按照当前实验结构生物学的发展速度,这本需要数亿researcher-year的工作。科学家能够基于平台上的工具集全面观察细胞系统的复杂性,包括结构、相互作用和修饰,药物作用、激素生成和DNA修复如何影响生物功能,从此都将被揭示。

当然,处于商业化利益考虑,AlphaFold 3的使用上也会受到很多限制,与RoseTTAFold和AlphaFold 2不同,研究者们无法运行自己的AlphaFold 3版本,也无法公开AlphaFold3的底层代码,或模型训练后获得的其他信息。他们能做的,就是使用「AlphaFold 3服务器」,输入自己选择的蛋白质序列和一些辅助分子。而且,对AlphaFold 3服务器的访问也是受限的。目前每天研究者只能进行10次预测,且无法获取与潜在药物结合的蛋白质结构。

AlphaFold 3带给AI4S的灵感启示

昨天清晨,在看到谷歌DeepMind团队发布了AlphaFold 3模型,心想终于...(因为作者本人当前也服务于人工智能生物医疗领域)能看到在生物微观token化的世界重AIGC大模型所激起的这一波浪花,泛起的这一层涟漪。

因此,灵感来源于Alphafold3在预测和探索生命本质的问题上,同时结合之前所撰写的技术文章「融合RL与LLM思想,探寻世界模型以迈向AGI」中部分观点进行一些延展思考,思考过程中记录的内容如下:

不管是人类信息世界中的自然语言符号tokenzie表示,还是生物微观领域氨基酸序列或分子结构的符号tokenzie表征,又或是当前计算机理解、交互、执行等的编程语言或指令集tokenzie执行模式,甚至在抽象概念世界中人类数学巨匠们所构建的数学形式化证明体系中所囊括的tokenize媒介,如果能够在所构建的认知流形空间中成为一种内涵完备平滑优雅的数据分布或知识语义承载,是否能够除了像当前LLMs那样体现AIGC在语言多任务和通用泛化能力外?也能够在未来AI4S的范式下,通过探寻LLM大规模预训练RL思想机制充分且完备的融合,实现构筑对复杂模式抽象概念(未被人类所发现的复杂科学问题)探索提供更加多元(概念)、多态(模态)、多模(模式)tokenize范畴,在这一进程中,也许正是由于这种多样、开放、灵活而具备弹性且可向量化的3·多分布表征形式,为复杂的科学规律、抽象的数学概念、恢宏而完备的理论统一,微观而深邃的作用机理等提供可行的认知流形探寻方式和路线。

结合近期自己对“群论”思想内涵的温故,未来是否也可以针对这种AI4S范式背后所隐藏的抽象数学结构定义或声明为特定的“群”来进行针对本身结构和性质深入的探索和研究呢?即 将真实世界各领域、跨尺度、多模态事物映射为tokenize的世界中,通过某种机制(如某种RL形式的RL-self play或RL-AIF)实现对tokenize世界中多样化token流形分布或结构构象重整式探寻,并最终能够辅助人们挖掘并探索人类未触达的未知领域以达到创新发现。

数学天才伽罗瓦 · 群的概念最早来自多项式方程的研究,是英年早逝的法国数学天才埃瓦里斯特·伽罗瓦(Évariste Galois,1811—1832)在20岁左右提出的

关于群论:
随着数学研究越来越深入,人们已经从为具体应用问题寻找数学答案发展为揭示问题背后的更加抽象和深刻的内在特征和规律,在描述数学问题时也越来越脱离自然语言不严密、不精确的松散形式,而变得越来越术语化和符号化,使得一般人难以理解,甚至不研究该领域的数学家也常常一头雾水。群论就是这样的一个代表。
顾名思义,群论当然是研究群的理论。群是什么呢?在数学上,一个群并不仅仅是一群东西(元素)的集合,同时还是对操作特性(计算特性)的声明,声明规定了群如何进行运算以产生更多的元素。比如,全体整数的加法就构成了一个群。
群的概念最早来自多项式方程的研究,是英年早逝的法国数学天才 埃瓦里斯特·伽罗瓦(Évariste Galois,1811—1832)在20岁左右提出来的。
伽罗瓦在研究当时代数的中心问题——五次以上的一元多项式方程是否可用根式求解时,发现了任意不可约的代数方程的根不是独立的,而是能用另一个根来表示。这种关系可以对根的所有可能进行置换,从而构成一个置换群。伽罗瓦将代数方程的解抽象为它们相应的代数结构,根据相关的群的性质来判断方程是否有解,从而用它彻底解决了这个问题。在某个数域上,一元n次多项式方程的根之间的某些置换关系所构成的置换群也因此被叫作该方程的 伽罗瓦群
在数论研究中,高斯使用抽象的代数理论研究整数和有理数的性质,其中也涉及群的概念。拉格朗日也曾提出过一个以他的名字命名的定理,揭示了一种特定整数群的性质。这些都成为导致群论产生的主要因素。
在新型几何(如双曲几何和射影几何)形成之后,德国数学家 菲利克斯·克莱因(Felix Klein)利用群论以更连贯的方式来组织它们。1872年,克莱因发表了著名的 埃尔朗根纲领(Erlanger Programme) ,给出了一个影响深远的建议:群使用代数方法抽象对称性的概念,是组织几何知识时最有用的方法。几何的分类可以通过无限连续变换群来进行。每种几何语言都有自己适用的概念。例如,射影几何可以很准确地谈论圆锥截面,但对于圆和角度就显得无能为力,因为这些概念在投射变换下不是不变的。用对称群的子群的相互关系来解释就可以把几何的多种语言联系在一起。这种几何中的无限变换群的理论成为导致群论产生的第三个主要因素。
这三个主要因素都是数学家们在研究自己领域里的特定问题时,发现和总结出的特定数学元素在运算下的结构特点,当他们对这样一些特点进行归类定义时,群的具体概念就自然而然地产生了。用数学的语言来说, 表示一个满足 封闭性、结合律,有单位元、有逆元等要求的 二元运算代数结构
时至今日,群的概念已经普遍地被认为是数学及其许多应用中最基本的概念之一。它不但渗透到几何、代数拓扑学、函数论和泛函分析中,而且在其他许多数学分支中起着重要的作用,形成了一些新的学科,如拓扑群、李群、代数群、算术群等。它们还具有与群结构相联系的其他结构,并在结晶学、理论物理、量子化学、编码学和自动机理论等方面都有重要的应用。
从19世纪50年代开始,群论的迅猛发展标志着数学的性质发生了一次深刻的变化。以前方程被看成一整套实际运算的表达,方程里无数的可能数字用字母(常量)或符号(变量)代替。但随着群论的崛起,人们开始把注意力转移到方程的数学结构上,研究这些结构背后更加抽象的特征和规律,单纯的数字本身正在数学中淡去,数字背后隐藏的结构和蕴含的规律成为现代数学研究的主要内容。数学从来没有变得如此抽象、深刻和更具普遍性,这也打开了人们重新认识宇宙的大门。

Q*猜想

好吧..终于到它了...Q-star,先来看下去年底来自LeCun的两篇推文...

当然,在当前各界,充斥着很多关于Q*猜想的文章或者论文发表,但我猜想,结合本文核心要点内容所述,通往Q*的路途也许是通过LLMs融合RL的方法来进行实现的,尽管这里面会有很多可想而知的大量、复杂前期数据准备工作,而这也是为super alignment做出的必要准备,正如在「中篇」向大家阐释的那样,要想实现对世界中存在着可用token表征的多种模式(pattern)的泛化映射结构,包括系统一、系统二中的直觉与推理pattern,RL中的AI4S的过程pattern,World Models/Sora中的物理世界模拟的pattern,可以想象这里面对于前期数据工程相关工作的挑战还是非常巨大的,但OpenAI一贯善于采用简单暴力的方法来解决,只不过直到现在为止,我们仍不得而知。同时,现在在产业界或学术界也普遍认为Q* 很可能是 Q 强化学习和 A* 搜索这两种 AI 方法的结合。”

回顾:如果大家针对Q*有进一步兴趣,建议大家回顾一下本篇文章的「上篇」和「中篇」中相关内容,也可以为Q*的深入理解有一些铺垫:
其中在「上篇」中的后半部分,提及了相关“由Mistral 基于其微调的Zephyr 7B论文中的AIF+DPO(不同于RLHF PPO的算法)算法的延展性思考”。
在「中篇」其中的RL与LLM本质探寻过程中尝试对这一问题进行了一些更深刻背后理论的阐释,包括从回顾AI历史、当前的RLAIF再到self-play下的超级对齐..并最终给出了基于“tokenize世界中关于数据复杂分布互映射上,并抽象其底层数学概念中的数据流形分布再到认知流形分布的阐释。”

另外,近日(2024/04/26更新补充),斯坦福大学一个团队的一项新研究似乎为这一研究方向的潜力提供了佐证,其声称现在已经取得非凡成就的「语言模型不是一个奖励函数,而是一个 Q 函数!」由此发散思维猜想一下,也许 OpenAI 秘密的 Q* 项目或许真的是造就 AGI 的正确方向(或之一)。相关论文解读及相关论述如下:

在对齐大型语言模型(LLM)与人类意图方面,最常用的方法必然是根据人类反馈的强化学习(RLHF)。通过学习基于人类标注的比较的奖励函数,RLHF 能够捕获实践中难以描述的复杂目标。研究者们也在不断探索使用强化学习技术来开发训练和采样模型的新算法。尤其是直接对齐方案(比如直接偏好优化,即 DPO)凭借其简洁性收获了不少拥趸。

直接对齐方法的操作不是学习奖励函数然后使用强化学习,而是在上下文多臂赌博机设置(bandit setting)中使用奖励函数与策略之间的关系来同时优化这两者。类似的思想已经被用在了视觉 - 语言模型和图像生成模型中。

尽管有人说这样的直接对齐方法与使用 PPO 等策略梯度算法的经典 RLHF 方法一样,但它们之间还是存在根本性差异。

举个例子,经典 RLHF 方法是使用终点状态下的稀疏奖励来优化 token 层面的价值函数。另一方面,DPO 则仅在上下文多臂赌博机设置中执行操作,其是将整个响应当成单条臂处理。这是因为,虽然事实上 token 是一次性只生成一个,但研究强化学习的人都知道,密集型奖励是有益的。

尽管直接对齐算法颇引人注意,但目前人们还不清楚它们能否像经典强化学习算法那样用于序列。

为了搞清楚这一点,斯坦福这个团队近日开展了一项研究:在大型语言模型中 token 层面的 MDP 设置中,使用二元偏好反馈的常见形式推导了 DPO。

他们的研究表明,DPO 训练会隐含地学习到一个 token 层面的奖励函数,其中语言模型 logit 定义最优 Q 函数或预期的总未来奖励。然后,他们进一步表明 DPO 有能力在 token MDP 内灵活地建模任意可能的密集奖励函数。

这是什么意思呢?

简单来说,该团队表明可以将 LLM 表示成 Q 函数并且研究表明 DPO 可以将其与隐式的人类奖励对齐(根据贝尔曼方程),即在轨迹上的 DPO 损失。

并且他们证明这种表示可以拟合任何在轨迹上的反馈奖励,包括稀疏信号(如智能体应用)。

实验

他们也进行了实验,论证了三个可能对 AI 社区有用的实用见解。

第一,他们的研究表明尽管 DPO 是作为上下文多臂赌博机而派生出来的,但 DPO 模型的隐含奖励可在每个 token 层面上进行解释。

在实验中,他们以定性方式评估了 DPO 训练的模型是否能够根据轨迹反馈学习 credit assignment。有一个代表性示例是商讨工作就职的场景,图 1 给出了两个答案。

其中左边是正确的基础摘要,右边是经过修改的版本 —— 有更高层的职位和相应更高的工资。他们计算了这两个答案的每个 token 的 DPO 等价的奖励。图 1 中的每个 token 标注的颜色就正比于该奖励。

可以看到,模型能够成功识别对应于错误陈述的 token,同时其它 token 的值依然相差不大,这表明模型可以执行 credit assignment。

此外,还可以看到在第一个错误(250K 工资)的上下文中,模型依然为其余 token 分配了合理的值,并识别出了第二个错误(management position)。这也许表明模型具备「缝合(stitching)」能力,即根据离线数据进行组合泛化的能力。该团队表示,如果事实如此,那么这一发现将有助于强化学习和 RLHF 在 LLM 中的应用。

第二,研究表明对 DPO 模型进行似然搜索类似于现在很多研究中在解码期间搜索奖励函数。也就是说,他们证明在 token 层面的阐述方式下,经典的基于搜索的算法(比如 MCTS)等价于在 DPO 策略上的基于似然的搜索。他们的实验表明,一种简单的波束搜索能为基础 DPO 策略带来有意义的提升,见下图:

第三,他们确定初始策略和参考分布的选择对于确定训练期间隐性奖励的轨迹非常重要。

从下图 可以看出,当在 DPO 之前执行 SFT 时,被选取和被拒绝的响应的隐含奖励都会下降,但它们的差距会变大。

当然,该团队最后也表示,这些研究结果还需要更大规模的实验加以检验,他们也给出了一些值得探索的方向,包括使用 DPO 让 LLM 学会基于反馈学习推理、执行多轮对话、充当智能体、生成图像和视频等。


以下引入文本「上篇」中关于DPO论述内容的回顾:

首先我们从Self-Play或Synthetic Data本身的意义上尝试进行一下思考的延展,这里由于Synthetic Data本身是建立在Self-Play的机制之上形成的,而Synthetic Data有很多种途径(RLAIF方法中的AI Generate与AI feedback即是其中一种途径),其中Self-Play即是一种看似带有目标场景性的数据生成途径,这个目标场景即是Self-Play中所处的带有一定目标性的模拟环境。而Synthetic Data最终会在后续过程中用于AMIE模型的Fine-Tuning。而为了更深入的理解Fine-Tuning的意义,则需要一步步回溯到合成的数据意义再到如何合成的数据,即数据的合成目标所带来的合成数据对整个模型用于模拟环境中的医学知识与能力空间Fine-Tuning的价值与意义。因此接下来我们将目标聚焦在核心的Self-Play之上。
在本篇论文中,Self-Play采用了类似Multi-Agent的思想,包括Patient Agent、Doctor Agent、Critic以及Moderator等角色,在整个自循环self-play过程中,我们发现经过多角色交互过程,在数据层面会合成扩展更多围绕诊疗环境的多种医疗条件和医学要素,而这些复杂的条件和要素又会作为模型非原始信息作为输入通过多角色进行进一步的模型生成、决策、反思或评判,是的,这里的关键就是这些「合成扩展的非原始信息作为输入 即 上下文提示」,它将在一步步的推理链条中将模型按照规定的情景引导至最终更标准、精确、更高泛化性的结果之上,而最终将模拟的对话结果用于模型的Fine-Tuning当中来,以保证对模型结果输出的正确性。这里可能大家会问,为什么需要如此繁琐的过程来合成数据呢?LLM自己不能直接在推理中解决问题吗?难道在采用大量的数据LLM预训练过程中并没有见到过这些数据?如果没见到,为什么模型还能通过在多角色的交互中合成出来?如果见到了这些数据,为什么还需要SFT,为什么还需要Multi-Agent、COT、TOT这一过程?当然要要完全回答上述这些问题,可能需要对LLM的预训练机制和原理进行展开和剖析,在了解了其训练本质后,也许会逐步找到解决上述疑问的办法。
在这里尝试再进行一些延申,试想一下,在LLM预训练过程中真实世界数据样本是真正足够的吗?与某个领域的任务对应的真实世界数据样本的组织和分布是合理的吗?即用于LLM pre-training的人类认知下的训练样本空间的「token」序列组织形态是天然COT的吗?LLM在预训练过程中所预测的下一个token学会的是什么?预训练时是否能够覆盖空间所有的复杂情况?模型提示词工程 Prompt Engineering与模型参数的Fine-Tuning的本质普遍性?基于Multi-Agent环境下,是否能达成类AlphaGO这样的self-play博弈环境的学习?等等这一系列问题似乎将会将我们带入到一个更本质的探寻空间。
在进行上述问题思考和探寻的过程中,刚好也联想到去年了解到的Mistral 7B,而由Mistral 7B也进一步了解到基于其微调的Zephyr 7B论文中的AIF+DPO(不同于RLHF PPO的算法)算法的思考,包括从Anthropic的RLHF到Cluade的RAILF,。在这里除了让大众眼前一亮的DPO算法(DPO利用从奖励行数到最优策略的解析映射,使得将奖励函数上的偏好损失函数转换为策略上的损失函数)之外,我想在AIF这一环节所带来的意义也是非常重大的。
在Zephyr中,如下图所示,其三步骤的训练方式与chatGPT的三阶段训练方式有着看似较大的差异:

Step1 - sSFT:通过大规模、自指导式数据集(UltraChat)做精炼的监督微调(dSFT)
Step2 - AIF:通过集成收集AI反馈(AIF)聊天模型完成情况,然后通过GPT-4(UltraFeedback)进行评分并二值化为偏好
Step3 - dDPO:利用反馈数据对dSFT模型进行直接偏好优化·DPO
其中这里的Step2 - AIF,即某种程度上的一种self-play,也是通过多模型prompt生成来进行的一种RL,试想,通过其中的AIF,对于模型最终所采用的DPO算法的SFT过程里,其用于最终模型的SFT所训练的AIF数据集在与原始pre-training数据集在数据(tokens)序列组织构象上应该有着一些差异,而这种差异是之前原始数据集在用于模型pre-training中很难找到的,而这也是一种Synthetic Data的路径,关键是这种Synthetic Data与原始Data上述中的那些特征与知识分布差异。
DPO算法:如下公式的解析通俗来讲就是:当一个答案是好的答案时,模型要尽可能增大其被策略模型生成的概率,而当一个答案是差的答案时,模型则需要尽可能降低其被策略模型生成的概率。


以上,我们在RL×LLM上开了一个小头,了解到了一些两种算法或训练模式的融合例子,并尝试做出了一些探索性思考,接下来,将上述模型case以及延展的思考进行一下沉淀,回归第一性原理进行更进一步的本质探寻,以求找到两者之间所隐含的的共性、差异以及之所以呈现出当前技术发展路径与现状的必然性..

大家如果有兴趣可以继续参考如下来自于DPO的简要概述:

DPO方法的定义与工作原理

直接偏好优化(DPO)是一种新兴的机器学习方法,它旨在直接通过用户反馈来优化语言模型的输出。与传统的强化学习方法不同,DPO不依赖于一个预先定义的奖励函数。相反,它使用从用户反馈中提取的信号来调整模型的行为,使其更加符合用户的偏好。与经典的RLHF不同,DPO(如Rafailov等人在2023年推导的)完全保持在上下文bandit设置中,并且还使用了基于bandit的偏好模型。为了避免使用RL算法,DPO使用了KL-contextual bandit版本的RL问题的众所周知的闭式解:

其中π∗是最优策略,Z(x)是归一化的分区函数。DPO重新排列这个方程,以解出奖励:

将这个关系代入用于奖励建模的标准二进制交叉熵损失函数中,得到DPO的损失方程,因为分区函数Z(x)从Bradley Terry模型中消除。

在DPO中,模型的每个输出都被视为一个“臂”,而用户的反馈则被用作评估这些“臂”的“奖励”。通过这种方式,模型学习哪些类型的输出更可能获得正面的用户反馈,并倾向于在未来的预测中生成类似的输出。

DPO与传统强化学习方法的对比

传统的强化学习方法通常依赖于一个明确的奖励函数来指导模型的学习过程。这个奖励函数定义了在给定的状态和行动下应该获得的奖励。但是定义一个能够准确反映复杂任务目标的奖励函数往往是非常困难的。DPO方法的一个关键优势在于它不需要这样的奖励函数。它直接利用用户的反馈来指导模型的学习,这使得它在处理那些难以用传统奖励函数描述的任务时更加有效。

DPO在实际应用中的优势

DPO方法在实际应用中的一个主要优势是它的灵活性和适应性。由于它直接依赖于用户反馈,DPO能够适应用户的变化偏好,并且能够在没有明确奖励函数的情况下进行优化。此外DPO还能够处理那些传统强化学习方法难以处理的任务,如那些需要细粒度评估和长期策略规划的任务。通过直接从用户反馈中学习,DPO能够在这些复杂的任务中找到有效的策略。DPO为优化语言模型提供了一个直接、灵活且高效的方法,特别是在那些传统强化学习方法难以应用的领域。

令牌级别的奖励函数与策略优化

直接偏好优化(DPO)方法在令牌级别的应用中,展现了其独特的优势。在这个层面上,每个令牌(即单词或字符)都被视为一个决策点,模型需要在这些决策点上做出最优选择以生成最终的文本输出。DPO通过评估每个令牌对整体输出质量的贡献来优化策略,这种方法允许模型在生成文本时进行更精细的调整。在令牌级别上,奖励函数的作用是为每个可能的令牌选择提供一个评分,这个评分反映了该选择对于达成目标的贡献程度。DPO方法通过用户反馈来动态调整这些评分,使得模型能够学习到哪些令牌选择更能满足用户的偏好。

DPO在组合泛化中的应用

组合泛化是指模型的能力,能够将学到的知识和模式应用到新的、未见过的情境中。DPO通过在令牌级别上进行优化,为模型提供了学习如何将不同的令牌组合成有意义和符合用户偏好的输出的能力。在实际应用中,这意味着DPO训练的模型能够更好地处理新的用户查询和任务,即使这些任务在训练数据中没有直接的例子。通过这种方式,DPO有助于创建更灵活、更适应性强的语言模型,这些模型能够在多变的真实世界情境中表现出色。DPO在令牌级别的解释能力为语言模型的优化提供了一个强大的工具,它通过精细的信用分配和组合泛化能力,使模型能够更好地适应用户的具体需求和偏好。这种方法的应用前景广阔,从提高对话系统的互动质量到创建更准确的文本生成模型,DPO都显示出了巨大的潜力。

经典搜索算法的原理

经典搜索算法在人工智能领域中扮演着重要角色,特别是在决策问题和规划任务中。这些算法旨在在大规模的状态空间中寻找最优解或接近最优解的策略。1.深度优先搜索(DFS):从根节点开始,沿着一个分支一直探索到底,然后回溯到上一层,继续探索其他分支。DFS通常用于树结构或图搜索。2.广度优先搜索(BFS):从根节点开始,逐层探索,先探索所有相邻节点,然后再探索下一层。BFS通常用于图搜索和状态空间搜索。3.A*搜索:结合了启发式信息和实际代价的搜索算法。它使用估计的最优路径成本(启发式函数)来指导搜索,以便更快地找到目标状态。


P vs. NP 的五十年

不管是通往未来的AGI还是World Model或World Simulator,我们可能仍旧会在持续的路途探寻中遇到P/NP这个存在于计算机领域50年的老大难问题,当然这也是对于是否能够彻底实现AI4S的一种侧面印证,其中个人认为P/NP问题似乎在某种中与AGI或AI4S相互影响亦或携头并进着,甚至反过来某种程度上,P/NP会指引或驱动着通用人工智能的发展...如下这篇文章来自网上内容的整理并在其中进行了注释说明

P和NP问题一直是计算机领域的老大难问题,那么在近50年间,人们对这个问题有什么深入的研究呢?让我们在本文中深挖这个世纪难题。

在1971年5月4日,伟大的计算机科学家和数学家Steve Cook就在他的论文《定理证明程序的复杂性 The Complexity of Theorem Proving Procedures》中首次向世界提出了P和NP的问题。在50年后的今天,世人仍然在试图解决这个计算机领域中最著名的问题。其实在12年前(2009年),我也曾经就该问题进行了一些讨论,大家可以看之前的《P与NP问题的现状》综述。

文章地址:Fortnow, L. The status of the P versus NP problem. Commun. ACM 52, 9 (Sept. 2009), 78–86. https://doi.org/10.1145/ 1562164.1562186

计算机理论在近些年并没有得到很大的发展。从2009年那篇文章发表以来,P与NP问题及其背后的理论并没有发生显著的变化,但计算世界确实发生了变化。比如说云计算,就推动了社交网络、智能手机、经济、金融科技、空间计算、在线教育等领域的飞速发展。更重要的是,云计算还帮助了数据科学和机器学习的崛起。

在2009年,世界前10大科技公司中出现了一家独大的场面——微软公司独孤求败。但是截至2020年9月,市值前七名的公司分别是苹果、微软、亚马逊、Alphabet(谷歌)、阿里巴巴、Facebook和腾讯,彼此平分秋色。不光是大公司的变革明显,计算机人才的需求量也是如此。据统计,在2009到2020年间,美国的计算机科学专业毕业生的数量增加了三倍有余,但这还是无法满足市场上对该领域人才的需求量。

P和NP的问题作为数学界和计算机界的一个难题来源已久,它被列入克莱数学研究所的千年难题之一。而且这个组织还为能够攻克该问题的研究人员提供了上百万美元的奖金悬赏。我会在文章的末尾用一些例子来解释P和NP问题,这虽然没能让我们从本质上对其有更多的认识,但是也能看出来P和NP的很多思考和成果推动了这个领域的研究和发展。

P和NP问题

如果有人问你,你能不能在微博上找到一些人,他们彼此之间都是朋友,这帮人的数量大概是300左右。你会怎么回答这个问题?

假如你在一个社交平台企业工作,而且可以访问整个平台的数据库,也就是能看到每个人的好友列表,那你可以尝试遍历所有的300人群组,然后挨个儿看他们是否有相同的关注人群,如果是,则他们被称为一个团(Clique )。但是这样算法的计算量太大,数量也太多了,通常无法全部遍历。

你也可以耍耍小聪明,也就是从小的群组开始,然后慢慢的将这个小群组扩大,纳入那些彼此之间都是好友的人。当然实际做起来可能也有难度。其实从理论上来说,这个问题没有最好的解决方案,没有人知道到底存不存在比挨个遍历更好的解决方案。

这个例子其实就是一个典型的P和NP的问题。NP代表了可以有效检验一个解的准确性的一类问题。比如当你知道有300个人可能构成一个团,你就可以快速的检验出由他们两两配对的44850对用户到底是不是都是彼此的好友。成团问题(clique problem)是一个NP问题。

P则代表了可以有效找到解的问题。我们不知道这300个目标人群的问题是否也是具有P的可解性质。

实际上,令人惊讶的是,成团问题具有“NP完全”的性质。也就是说,当且仅当P=NP时,我们才可以快速有效地解决成团问题。

许多其他问题都具有NP完全的性质,比如3 Coloring问题(是否可以仅使用三种颜色对地图进行染色,然后让相邻的两个地块没有相同的颜色)、旅行商问题(通过城市列表找到最短路径,让这个旅行者能够在路径所有城市之后回到出发城市),等等。

形式上来说,P代表“确定性多项式时间”,也就是可以在输入长度的多项式限定时间之内解决的一类问题。NP则代表“非确定性多项式时间”。在实际的算法开发中,我们最好可以换个角度看待P和NP的问题:我们可以将前者视为可有效计算,而将后者视为可有效检查的问题。

大家如果想更多的了解P和NP的问题,可以去看看2009年的综述论文,或者一些其他的科普书籍自行了解。也有一些比较偏正式的介绍工作,比如Michael Garey 和 David Johnson在1979年出版的书籍,他们的这本书对于想了解NP完全问题的读者来说一定不能错过:

Garey, M. and Johnson, D. Computers and Intractability. A Guide to the Theory of NP-Completeness.W.H. Freeman and Company, New York, (1979).

为什么要讨论P和NP问题

在1971年的那个星期二的下午,Cook在ACM计算理论研讨会上发表他那篇关于NP完全的论文时,他证明了可满足性是NP完全的,而重言式是NP难的。论文中也推断说Tautology是不具备P特性的一个问题,当然,当时没有对这个问题进行很好的证明。但无论如何,这篇论文以及其中的证明方法,标志着复杂性理论的重大突破。

想要去证明一个数学概念通常具有很大挑战。算法和证明的基础概念至少可以追溯到古希腊时期,当然,他们从来没考虑过NP和P这样的问题。高效计算和非确定性的理论基础是在1960年代才发展起来的。但P和NP的问题在这之前很久就已经被提出来了,只是我们没有给它们正式冠名而已。

库尔特·哥德尔在1956年曾经写过一封给冯·诺依曼的信。在信中他就初步描述了P和NP问题。这封信直到1988年才被发现,并广为流传。

Richard Karp真正意义上首次将P和NP问题引入大家视野。他在1972年的论文中介绍了该问题,并随后得到广泛的关注。

我们知道很多有名的组合问题都是NP完全的,包括Clique, 3-coloring和旅行商问题。1973年,当时在俄罗斯的Leonid Levin在他两年前独立研究结果的基础上发表了一篇新的论文,并在这篇论文中定义了P和NP问题。当Levin的论文传播到西方的时候,P和NP问题也已经确立了作为计算领域最重要问题的地位。
3
Optiland

Russell Impagliazzo在1995年的一篇经典的论文中描述了P和NP问题具有不同程度可能性的5个层级:

算法:P=NP或理论上等效,例如NP的快速概率算法(fast Probilistic algorithm)

  1. 启发式:NP问题在最坏的情况下很难求解,但平均来说还是可以得到求解的
  2. Pessiland:我们可以轻松的创建困难的NP问题,这是所有可能中最糟糕的,因为我们既不能在平均意义上解决难题,也不能从这些问题的难度中获取任何明显的优势
  3. Minicrypt:存在加密的单向函数的问题,但我们没有公钥加密
  4. Cryptomania:公钥密码学,也就是说,两方可以通过公开渠道来交换加密信息,然后通过公钥解密

上述的5个层级没有正式的定义,都是通过人们对P和NP问题的了解人为规定的。但是人们普遍认为,Cryptomania这个等级的可能性最高。

Impagliazzo借鉴了P和NP理论中的核心思想——“我们无法拥有一切”。

我们或许可以解决困难的NP问题,或者解决密码学的重要关键,但是不能将两者同时攻克。

不过,也许我们正在走向事实上的Optiland——机器学习和软硬件优化等方面的长足进步让我们能够在一定程度上解决当年无法设想的问题,包括语音识别、蛋白质折叠解析等。但是大多数情况下,我们的密码协议仍然是安全的,所以不用太担心。

在2009年的综述中,我曾经在其中“如果P=NP怎么办”的章节中提出,通过使用奥卡姆剃刀法则,学习将会变得容易——我们只需要找到与数据一致的最小程序,也就是问题的关键核心。那么此时,原本十分难以解决的视觉识别、语音识别、翻译以及其他的任务都会变得微不足道。我们还将对天气、地震和其他自然现象做出更好的预测和理解,以及建模。

今天,我们可以使用人脸识别解锁手机,可以和一些智能设备语音对话来提出问题并且得到理想的回答,可以将我们说的话、输入的文字翻译成另外的语言。我们的手机会收到关于天气和其他突发事件的警报,它的预测效果比我们之前十几年前能做到的效果好的多。与此同时,除了对小密钥长度进行类似暴力破解的攻击之外,我们的密码学基本上还是很鲁棒和安全的。那么现在,让我们看看计算、优化和学习方面的最近进展如何将我们带到Optiland中吧!

解决困难问题

2016年,Bill Cook和他的同事决定挑战一个问题,就是如何以最短的距离访问英国的每一家酒吧。他们列出了已知的24727家酒吧,并且迈开腿,真的去走遍这些酒吧。这是一次跨越45495239米,大概28269英里的步行之旅,比绕地球一圈还要长。

其实Cook做了个弊,他没有真的走去每一家酒吧,他忽略了其中一些酒吧来让这次步行没那么夸张。这个事情在英国的媒体中宣传了之后,很多人在底下留言说:你没有来我家旁边的这个酒吧呀。于是,Cook和他的公司重新开始计划,将酒吧的名单增加到49687个,整体的旅行长度就达到了惊人的63739687米,也就是39606英里。但其实,相对于之前的那个旅行,这趟新的寻酒之旅其实只需要多走40%的距离就能达到两倍多数量的酒吧。

遍历英国49687家酒吧的全览图

这种酒吧遍历之旅在某种程度上就是旅行商问题的变种,也就是最著名的NP完全问题之一。通过所有49687家酒吧的可能游览次数约等于3加上后面211761个零这个量级。当然了,Cook的计算机不会搜索整个集合,而是使用了多种优化的技术。更令人印象深刻的是,这次旅行带有基于线性程序对偶性的最优性证明。

除了旅行商问题之外,我们还看到了求解可满足性和混合整数规划方面的重大进步,也就是线性规划的一种变体,其中一些变量的解要求是整数。当我们使用高精度的启发式算法,使用快速的处理器、专用的硬件系统和分布式的云计算进行辅助的时候,人们通常可以解决实际中出现的具有好几万个变量和几十上百万个约束的问题。

面对NP问题时,人们通常可以将NP问题表述为可满足性或混合整数规划问题,并将其扔给目前最好的求解器来借助计算机的力量,自动找到答案。这些工具已经成功用于电路和代码的验证、自动化测试、计算生物学、系统安全、产品和包装设计、金融交易,甚至是一些困难的数学问题求解之中了。


数据科学和机器学习

人们通常无法忽视机器学习在近些年带来的革命性影响,尤其是神经网络。人工神经网络建模的概念基础,基本上是计算加权阈值函数。这种思想起源于1940年代Warren Mcculloch和Walter Pitts的工作。在1990年代,Yoshua Bengio、Geoffrey Hinton和Yann Lecun开发了反向传播算法,来将深度神经网络的层数加深,并得到非凡的结果。

与此同时计算机硬件计算、存储等方面出现突破,那些更快、更加分布式的计算单元,那些专用的硬件和海量的数据有助于推动机器学习完成很多类似人类的功能。ACM认识到Bengio 、Hinton和LeCun的贡献,并在2018年为他们颁发了图灵奖。

有的同学可能会问,机器学习怎么和P、NP问题相联系呢?奥卡姆剃刀说:如无必要,勿增实体。如果P=NP,我们可以用这个思想来创造强大的学习算法:找到与数据一致的最小电路。即便P≠NP,机器学习也可以学习并且近似这种思想,这就赋予它强大的能力。

尽管如此,神经网络也可能不是真正的“最小”的电路,当然或许可能是尽量小的。今天我们所使用的深度学习方法通常是结构固定的,能够变动的都是神经元连接上的权重。为了能够实现足够泛化的表达能力,这些网络通常有几百上千的权重数量。这就限制了深度网络的能力(也就是不够简单)。它们可以在人脸识别上做的很好,但是无法根据示例学习乘法。

通用分布和GPT

让我们考虑二进制字符串的无限集上的分布场景。我们虽然不能拥有均匀分布,但是可以创建一种每个长度相同的字符串都有相同概率的分布。但是,有些字符比其他字符更重要。比如π的前一百万位数字比随机生成的一百万位数字更有意义。

Think:这里可以与「中篇」 融合RL与LLM思想,探寻世界模型以迈向AGI中关于数据&认知构象分布上做对比关联思考..如下图所示

我们可能希望将更高的概率放在更有意义的字符上。现在我们有很多方法能够做到这点。实际上,已经有人发现了一种接近任何其他可计算分布的通用分布,这种分布与学习有很大的联系——例如,任何能够以小错误率学习这个分布的算法,将可以学习所有的可计算分布。

但是问题在于,即使P=NP,这种分布通常也是不可计算的。如果P=NP,我们仍然可以通过创建一个对其他有效可计算分布通用的分布来获取一些有用的信息。

那么我们能够从机器学习中得到什么?让我们考虑生成式预训练Transformer(GPT)。

在2020年5月GPT-3发布了,它有1750亿个参数,并且训练了4100亿个token。这些Token来自很多的文字语料库。它能够回答问题,能够根据提示写出文字,甚至可以进行一些基础的编码工作。尽管还有很长的路要走,但是GPT-3因其生成内容的自然性而受到广泛的赞誉。

在某种意义上,我们可以将GPT-3视作一种特殊的分布方法。我们可以在其中查看算法生成输出的概率,这是通用分布的一种弱化版本。如果我们将通用分布限制为具有给定前缀,则会提供由该前缀提示的随机样本。GPT-3也可以建立在此类提示的基础上,无需进一步训练即可处理范围广泛的领域知识。随着这一系列研究的发布,我们将更接近一个可以执行内置学习的通用衡量标准:从给定的上下文中学习一个随机样例。

科学和医学

在科学方面,我们通过进行大规模的模拟来理解。例如在探索核聚变的反应过程中,我们就取得了一些不错的结果。研究人员可以应用一种形式化的研究方法,为物理系统创建一个假设,然后使用这个假设,并且不断的使用这个假设进行反应和模拟。如果我们得到的结果和实际不相符,则丢弃模型,并且重新开始。

当我们得到了一个强大的模型之后,我们就可以在物理模拟系统中进行很多实际实验中代价昂贵的测试了。如果P=NP,我们可以使用奥卡姆剃刀方法来创建假设,即找到与数据一致的最小电路。机器学习技术可以沿着这条技术路径前进,使假设的创建自动化。当我们给定数据之后,不论是通过模拟还是真正的实验得到数据,机器学习就可以创建模型来拟合这些数据,达到最佳的匹配。我们可以使用这些模型进行预测,然后就像之前那样测试这些预测。

虽然这些技术使我们能够找到可能遗漏的假设和模型,但是也有可能导致误报。人类通常会趋向于接受有95%置信度的假设(这意味着20个坏假设中只有一个能够通过检验)。机器学习和数据科学工具能够让我们生成假设,这些假设都有着脱离实际建模的风险。这就限制了它的工作范围,比如医学工作者就不能承担这些风险,他们的诊断中如果有这些问题,那会遭到很大的麻烦。生物系统也是一种极为复杂的结构。我们知道人类的DNA形成了复杂的编码,它描述了我们的身体是如何形成的,以及它们执行的功能。但是很可惜,我们目前对其工作原理知之甚少。

在2020年11月30日,谷歌旗下的DeepMind发布了AlphaFold,这是一种基于氨基酸序列预测蛋白质形状和结构的新算法。AlphaFold的预测几乎达到了实际实验构建氨基酸序列的和测量蛋白质形状相同的准确度。但是关于DeepMind是否真正“解决”了蛋白质折叠的问题,还存在一些争议,现在评估其影响还为时过早,但是从长远的角度来看,这可以为我们提供一种新的数字工具来研究蛋白质,来了解它们是如何互相作用,并且了解如何设计DNA来对抗疾病。

超越P和NP问题的思考:国际象棋

NP就像是一个迷宫一样,在任意大小的棋盘上各种操作。数独也是NP完全的问题,它需要从一些正方形中给定的数字设置中求解。但是,当我们问到谁从给定的初始设置中获胜时,我们是不是就没办法给出准确的回答了呢?即使我们有P=NP的前提,它也不一定会给我们一个完美的国际象棋的程序来解决问题,这就像需要设计一个程序,它保证能够让白棋走的这一步,逼迫黑棋走那一步,然后白棋再按照计划走这一步,使得黑棋...,最终是白棋获胜。人们无法单独在P=NP上完成所有这些白棋和黑棋的交替。像这样的游戏往往被称为PSPACE-hard,即很难计算、或使用合理数量的内存,并且在约定的时间之内求解完成的问题。根据规则的精确限制,国际象棋和围棋甚至可能更难。

这不意味着如果P=NP,你就不能得到一个好的国际象棋程序。事实上,在某种程度上,象棋的程序体积越大,其智能程度越高。我们可以找到一种有效的计算机程序,它可以击败所有尺寸稍小的其他程序。同时,即使没有P=NP,计算机在国际象棋和围棋方面也变得非常强大了。1997年,IBM的深蓝击败了当时的国际象棋世界冠军。

此外,机器学习为电脑游戏带来了巨大的进步。我们讨论一下声名大噪的AlphaZero,它是2017年DeepMind开发出来的人工智能程序。

Think:想象一下中「上篇」 融合RL与LLM思想,探寻世界模型以迈向AGI的AlphaZero中的描述..

AlphaZero使用了一种被称为蒙特卡洛树搜索MCTS的技术,这个技术为两个玩家随机移动以确定最佳的行动方案。AlphaZero使用深度学习来预测游戏位置的最佳分布,以优化使用MCTS的获胜机会。虽然AlphaZero不是第一个使用MCTS的工作,但是它没有任何内置的人工策略或者使用任何已有的游戏数据库。AlphaZero只学习了游戏的规则。这就让AlphaZero在国际象棋和围棋这两个运动中大放异彩,除了交替移动和固定大小的棋盘之外,这两个游戏在规则和目的上没有任何相似之处。DeepMind最近在MuZero上也有新动作。它甚至都没有得到完整的游戏规则,只得到了对棋盘位置的一些表示,和合法动作列表,以及对哪些位置是输是赢有了一些了解。也就是说,现在我们已经发展到了一个阶段,在这个阶段里,纯机器学习在国际象棋或者围棋这样的高复杂度的问题中都能轻松击败大多数的人类或者启发式算法。人类的先验知识只会画蛇添足、碍手碍脚。对于国际象棋和围棋这样的游戏,机器学习可以在P=NP无法满足的情况下取得成功。太不可思议了。

可解释的人工智能

许多机器学习算法似乎已经能够达到不错的效果,但是我们不知道其中的原因。如果我们仔细的去看语音翻译或者图像识别的神经网络内部参数,很难理解它为什么会做出这样的动作或者处理。有人可能会问了,它有这个能力就好,我们为什么要关心?以下是几个原因:信任、公平性、安全性、因果关系。

信任:我们如何知道神经网络是否正常运行了?除了检查输入和输出之外,我们无法对其他中间的变量进行分析和理解。不同的应用程序具有不同的信任级别。如果Netflix推荐了一个很差的电影,那没什么问题,但是如果自动驾驶汽车推荐了一个让车撞墙的转弯操作,那事儿可就大了。

  1. 公平性:很多应用程序都是在训练集上进行学习的,训练集中的数据可能不是完全公平或者说没有偏见的。如果不理解程序,那我们可能无法纠正其中的偏差和歧视。种族歧视可是一个严重的话题呦。
  2. 安全性:如果我们使用机器学习来监控数据安全系统甚至安保系统,那么不可解释的机器学习模型可能无法让你知道他存在的漏洞是什么,尤其是当我们的对手具有适应性的时候。如果我们能够理解代码和网络的结构,就可以发现并且修复这些安全漏洞。当然,如果我们的敌人拥有代码,他们也有可能发现漏洞并针对其组织攻击。
  3. 因果关系:目前来说,我们最多可以检查机器学习算法是否只与我们想要的输出类型相关。但是理解代码能够帮助我们理解数据中的因果关系,从而造出更好的科学理论和医学成果。

如果P=NP,我们能得到更好的计算机程序吗?如果你有一个解决NP完全问题的快速算法,你就可以用它来找到匹配旅行商问题的最短路径,但是你不会知道为什么这种方法有效。另一方面,我们都希望能够得到可解释的算法,因为能够深入了解其属性。在研讨会中,我们都在研究可解释的人工智能,比如ACM Fairness Accountability and Trust会议等。

机器学习的局限性

虽然机器学习在过去的几十年间取得了令人瞩目的进展,但是这些系统远非完美。在大多数的应用中,它们还是会被人类碾压。我们将继续通过新的和优化的算法,收集更多的数据并研发更快的硬件来提高机器学习的能力。机器学习似乎确实有不少的局限。正如我们上面看到的,机器学习让我们无限逼近P=NP,但是永远无法达到这个程度。比如,机器学习在破解密码方面的进展很慢,我们稍后对其进行讨论。

机器学习似乎也无法学习简单的算术关系。比如总结大量的数字规律,以及大数相乘。人们可以想象将机器学习和符号数学工具结合起来,一定能得到很好的效果。虽然我们已经在定理的证明应用方面看到了一些进步,但是距离梦想中的功能还比较遥远。我也正在写一篇相关的论文。

同样的,P=NP将使这些任务变得更加容易,或者至少更加易于处理。机器学习在面对和训练数据分布不同的样本的时候,表现通常不好。这可能是由于低概率的边缘情况,例如在训练数据中没有很好的包括所有人种的时候,对于一些国家或者种族的人的识别效果比较差。深度神经网络算法可能有数百万个参数,因此,它们可能无法达成良好的泛化分布。如果P=NP,那就可以生成最小尺寸的模型,并且能够做出最好的泛化,但是如果我们无法进行实验,我们永远不知道这是不是P=NP问题。

跟机器学习一样,我们目前还没有任何的工作能够接近真正意义上的通用人工智能。这个通用人工智能是指对某个主题的真正理解,或者真正具有意识或者自我意识的人工系统。定义这些术语可能比较棘手,也具有一些争议。就我个人而言,我目前还没见过一个正式的通用人工智能的合理定义,我只是抓住了对它概念的知觉的理解并且总结。我怀疑我们永远不会实现真正意义上的通用人工智能,即使P=NP。


密码学

虽然我们在解决NP问题方面取得了很大的进展,但是很多密码学的领域仍旧毫无进展。包括单向函数、安全散列和公钥密码等多种形式的加密。一种有效的NP算法,其实是能够破解所有密码系统的,除了那些信息理论上安全的密码系统(比如一次性密码和一些量子物理学的安全系统)。我们已经看到过很多成功的网络安全攻击,但是它们通常源于服务器糟糕的设置、很差的随机数生成器,或者人为的一些错误,几乎都不是由于密码学本身的问题所导致的。

现在的大多数CPU芯片都内置AEC,因此一旦我们使用公钥密码技术来设置私钥,我们就可以像发送纯文本一样轻松的发送加密数据了。加密为区块链和加密货币提供了底层的技术支持,这意味着人们对加密技术的信任十分高,足以将现金和比特币进行交换。Michael Kearns和Lesilie Valiant在1994年的研究表明,学习最小的电路,甚至学习最小的有界层神经网络,都可以用来分解质因数和破解公钥密码系统。但是到目前为止,机器学习尚未成功用于破解密码协议。

可能有人会问,我们既然已经在许多其他NP问题上取得了很多的进展,为什么单单是密码学上失灵了呢?在密码学中,我们可以选择问题,专门设计为这个场景单独设计的方法来加密,从而达到不错的效果。而其他的NP问题通常使用通用的、通过程序自己形成的方法来执行。这些自动匹配的方法可能不是量体裁衣的,就并不是最合适和最困难的方法。

量子计算是目前我们知道的唯一一个能够威胁到互联网公钥协议安全的存在。Shor的算法可以用于对大数进行质因数分解和其他相关的数论计算。这种担忧可以通过几种方法来加以解决。虽然目前来看量子计算取得了一些令人惊叹的进步,但是它距离能够破解当今的密码系统相去甚远,毕竟还不能够处理足够多的纠缠位。有人估计,可能还得需要几十年甚至几个世纪才能真正使用Shor算法+量子计算机对目前的公钥产生威胁。另外,研究人员在开发对量子攻击具有抵抗力的公钥密码系统方面取得了良好的进展。我们将在本文后面的部分详细介绍量子计算。

因式分解问题,目前来说并不是NP完全的,即使我们没有大规模的量子计算机,数学上的突破也肯定有可能推导出很高效有用的解决方案。不论我们如何看待量子计算的未来,一些拥有了多种公钥系统的计算机都可能解决因式分解问题。

摩擦力般的复杂性

话说回来,面对这么多难以计算的问题,我们能有什么优势呢?或者说我们能从中学习到些什么呢?我想到了密码学。但是,既然造物主让某些计算问题变得十分困难和复杂,甚至难以求解和实现,肯定是有内在原因的,这和很多自然界中的摩擦力现象(Friction)十分类似。在物理世界中,摩擦力通常是需要我们额外付出能量做功来克服的,但是如果没有摩擦力这种常在的阻力,我们甚至无法行走、跑步和前进。同样的,在计算机的世界里,复杂性虽然会导致一些计算困难,但是如果没有它,我们可能就会遇到类似于无法前进般的更棘手的问题。在许多情况下,P=NP将消除这种摩擦力。

最近发表的很多计算理论相关论文告诉我们,如果消除了摩擦力般的计算复杂性,那么会产生许多负面的影响。例如,如果消除了计算复杂性,那么人们将不能够表露自己的思想,人们也只能够看到其他人所采取的行动,而不知其动作背后的目的。经济学家有一个术语:偏好启示(Preference Revelation),这个现象试图根据我们所采取的行为来推断其背后的真实目的。在过去的大量时间里,我们通常没有大量的训练数据来支持类似模型的训练,因此这种程序也成为了一种空中楼阁般高度不精确的“艺术品”,无法实用。

时至今日,我们从人们的网络搜索记录、他们的社交账号的照片视频、游戏账号的购买记录,以及在网上的浏览记录、现实生活中的足迹信息,以及各种智能设备中残留的隐私信息中收取大量的个人信息数据。因此数据集已经很充足。同时,机器学习也可以拥有处理这些复杂信息的能力,因此就可以据此做出非常精确的预测和估计。计算机对我们的了解往往比我们自己对自己的了解还要多。

我们现在的技术已经足够强大,强大到甚至能够开发出一个智能眼镜,让你戴上它就立刻知道眼前人的各种信息,姓名、年龄、身高体重、兴趣爱好,甚至是政治偏好。也就是说,在大数据的时代,由于机器学习和大量隐私信息的存在,本来十分复杂、几乎不可能实现的一些问题被计算机攻克,也就带来了隐私的泄露——复杂性不再能为我们提供隐私的保护。我们需要通过法律和对企业的责任约束来保护个人的隐私安全。

计算机世界的“摩擦”现象可以超越隐私。美国政府在1978年取消了对航空公司定价的管制,因此如果旅客想要找到一条最便宜的航线,就需要打好多个电话给很多家航空公司,或者通过旅行社来寻找。但是旅行社嘛,通常不会尽心尽力的帮你寻找最便宜的,而是寻找对他们利益最高的那条路线。各个航空公司的生存理念不同,有的可能致力于保持高水平的服务质量,因此价格稍贵;有些则是想要用低价来吸引更多的乘客。今天,我们可以很容易的通过计算机程序找到最便宜的航空公司的航线信息,因此航空公司也都跑去在价格上苦苦鏖战竞争,并期望计算出最佳的定价来提高上座率,此时服务态度和体验可能就被牺牲掉了。

计算机的“摩擦力”或者说复杂性,也有助于打击作弊问题。我在1980年读大学的时候,天天被微积分问题虐,整天都在各种数学计算,生不如死。但是时至今日,这些微积分问题在Mathematica和Matlab面前都是弟弟,一行指令轻松破解。我现在当老师了,在我的课程上,我甚至留不出一些网上无法搜索到的家庭作业题目来让学生训练。更可笑的时候,我甚至可以使用GPT-3或者它的后续优化代码来生成一些家庭作业。那么当GPT之类的工具已经可以自动回答这些很复杂的问题的时候,我们如何激励学生,或者说防止他们作弊偷懒呢?

股票交易也是一个重灾区。在过去,股票交易通常需要在一个很大的交易所中进行,就像我们在电影中看到的那样,交易员在那里用一个很帅的手势来指挥买入和抛售,用一个眼神来匹配最佳的价格。但是现在,算法会自动适应最佳的价格并且买入抛售股票。虽然偶尔会导致“闪崩”的现象。机器学习算法已经很强大了,他们能够替代人类进行一些决策,也能进行人脸识别,将社交媒体的内容和用户进行匹配,也能进行一些司法判决。这些决策系统都为人们提供了便利,但也带来了很大的社会挑战。比如歧视问题和政治两极化的问题正在被拉大。这个问题很复杂我们无法一言概之。

上述的问题只是此类场景中的一小部分。作为计算机科学家,我们的目的是使计算尽可能高效和简单,但我们必须保留减少计算复杂性,也就是计算“摩擦力”的成本。


量子计算机的力量

随着摩尔定律的失效,计算机研究人员将目光转移到量子计算机的领域,这些年,量子计算机的研究和应用正在经历大幅的增长。谷歌、微软和IBM等大型科技公司,以及各种创业公司都在量子计算机方面投入大量资源进行研究。美国发起了国家级的量子计算研究计划,中国等其他国家也在纷纷效仿。

在2019年,谷歌宣布他们已经通过使用53个量子比特的量子计算机实现了“量子霸权”,解决了当前传统计算机无法解决的很多计算任务。虽然有很多人质疑这个说法,但是我们无疑的正在处于量子计算新时代的起点之上。尽管如此,我们距离能够跑起来Peter Shor的量子算法,以及拥有一台真正的量子计算机,还有相当远的距离。保守来说,我们还需要几万个量子位的距离需要攻克。通常来说,量子计算机可以被理解成是由比特表示的状态数的系统,比如53个量子比特计算机的2^53个状态。这可能说明,我们可以通过创建特别多的状态位,也就是使用量子计算来解决NP完全问题——也就是大力出奇迹。但不幸的是,目前我们无法证明量子计算机能够充分操控这些状态位,也就是不知道使用什么算法来解决NP完全问题,在这个角度上,这个问题已经超出了Grover的算法限制。

复杂性更新

自从2009年以来,我们在高效计算理论方面取得了一些重大的进展。虽然这些结果在解决P和NP方面没什么帮助,但是它们可能从一旁帮助理解相关的问题,并且启发后世的一些研究发展。

图同构

一些NP问题无法表征为P(有效可解)或NP完全问题(与Clique问题一样难的问题)。我们之前讨论过的最著名的整数因式分解仍然需要指数级的时间来求解。对于另一个这样的问题,也就是图同构问题,我们最近看到了一些戏剧性的进展。图同构问题是指,人们可否找到两个图在统一表示下完全相同。具体举例来说,就像在Facebook中,当我们给定了两组1000人,我们能否将他们映射到另一个组中,在那个新组中好友的关系不变。(小A和小B是好友,在另一群人中A’和B’也是好友)

这个图同构的问题在80年代中有了一些理论上的证明。在80年代,有人用交互式的方法证明了图同构问题不是NP完全的,而且它其实不是很困难,在一些实际的情况下,使用启发式的方法也能快速找到解决答案。尽管如此,我们仍然无法找到一个能够在所有场景中都快速找到解的算法。Laszlo Babai在2016年对该问题进行了深入研究,并发表了一种用于图同构的多项式时间的解决算法。简单来说,P中的问题在多项式时间内如果可以得到解决,也就是对于某个常数k,复杂度是n^k,其中n是输入的大小,比如每组的人数。拟多项式时间算法在时间n^(logn)k内执行,只比多项式时间差一点点,但起码比我们预计的NP完全问题所需要的2^n^ε的复杂性好的多。

Babai的证明结合了组合学和群论,是一个非常棒的工作。虽然距离让这个算法能够在多项式时间内执行完还有些远,但是Babai提供了一个重要的理论结果。这在P和NP完全问题之间取得了一项重大的进展。

电路设计

如果NP在完整的电路设计的基础上(也就是与或非门)没有最小的电路,那么就不存在P=NP的解。虽然在1980年代的电路发展黄金年代中,没有明确的证明否定P=NP的假设。在2009年的各项调查中,也说明在过去20年中,电路复杂性也没有取得重大的成果。在1987年,Razborov和Smolensky证明说不可能用与或非和Mod_p门的恒定深度电路计算某些固定素数p的多数函数。但是对于带有Mod_6门的电路来说,我们几乎无法证明这个结果。即便是我们可以证明NEXP(NP的指数时间版本)无法通过与或非和Mod_6门的小型、恒定深度的电路进行计算,P和NP是否相等的问题在几十年见也仍旧无法得到解答。话说回来,恒定深度的电路在理论上被认为是具有很弱的可计算性的,我们在这些年一直没有取得实质性的进展,在电路的算法最新产出上的无人问津也侧面证明了这个现象。

在2010年,Rayan Williams表明NEXP确实不具有那些使用Mod_6或其他Mod门一样的恒定深度的电路。因此,他创造了一种新的技术,使用可满足性算法进行解决。这种算法的实现下界比尝试所有可能,或者使用一些复杂性工具来暴力实现来说要好一些。后来,Williams和他的学生Cody Murray进行了进一步的研究,结果表明,可以在任何固定的没有带Mod_m门的小的恒定深度的电路中,都有非确定性拟多项式时间的解。然而,证明NP没有任意深度的小回路这个问题,仿佛仍然遥不可及。

复杂性的反击?

在2009年的那篇综述中,我在名为“新希望”的章节中讨论了一种新的几何复杂性理论方法,这个方法基于Ketan Mulmuley和Milind Sohoni开发的代数几何和表示论来攻克P和NP问题。简而言之,Mulmuley和Sohoni创建了高维的多边形空间,以在NP的代数版本中找到P和NP的映射,从而在这个空间中重构、理解并解决该问题。他们的一个猜想中,假设多边形包含某个表示理论对象的特殊属性。在2016年,Peter Burgisser、Christian Ikenmeyer和Greta Panova从理论上证明了这种方法是不可能滴。

虽然Burgisser和Ikenmeyer、Panova的研究成果否定了GCT分离P和NP的方法,但是并没有将这种实验方法和思路进行否定。人们仍然可以根据这种表示理论对象的数量创建不同的多边形空间。尽管如此,我们还是无法孤注一掷的认为多边形方法能够在不久的将来解决P和NP的问题。

不可能的可能性

当我们反思P和NP问题时,我们看到这个问题有很多不同的含义。P和NP的数学正式定义仍然是它的官方定义,虽然很冷冰冰但是含义最为完全。而且能够解决这个数学问题的人还能给你的到数百万美元的赏金不是吗。

有时候,我们虽然可以通过可计算理论、电路、证明和代数几何等工具看到解决P和NP的方法,但是目前没有能够完全解决P和NP问题的有力方法。从这个角度上来说,我们正在抽象P和NP问题到一些领域中,降低了它的难度,也就是距离原问题越来越远。

在现实生活中,我们也有很多秉待解决的实际NP问题。在1976年出版的经典著作《计算机与难处理性:NP完全性理论指南》一书中,Garey和Johnson举了一个倒霉的员工的例子,他老板让他去解决一个NP完全优化的问题。最终的时候,这个员工苦恼地找到老板说,我实在没辙了,找不到一个有效的算法来解决这个问题,而且不光是我,这个世界上不管是比尔盖茨还是沃兹尼亚克都束手无策。书中说,这个老板不应该解雇这名员工,因为没有其他的人能够解决这个问题。

在P和NP的早期,我们将NP完全性视作障碍。这些是我们无法解决的问题。但是随着计算机的发展和进步,我们发现可以通过启发式与暴力计算的组合,在很多NP问题上取得很好的进展。在Garey和Johnson的故事中,如果我是老板,我可能不会解雇那名倒霉的员工,而是建议他使用一些新的方法,比如混合整数编码、机器学习以及暴力搜索的方法进行破解。NP完全意味着不可能,这个想法其实已经out了,它的时代也已经成为过去式了。NP完全,只是意味着可能没有始终有效和可扩展的算法而已,但是问题,还是有可能被解决的。

在我2013年发表的P和NP的书中,我有一章名为“美丽新世界”的文字。我在其中提到了一个理想化的世界,在那里,捷克数学家证明了P=NP,从而为所有NP问题提供了一种非常有效的解决算法。虽然我们不会也可能永远不会生活在这样的理想世界中,但是随着医学的进步,随着虚拟世界、元宇宙等新概念的崛起,P=NP这个古老的美妙话题似乎也不再遥不可及。

但是,话说回来,我们正在朝着几乎能够颠覆P=NP问题思想的方向大步前进。与其一直将其视为算法的障碍,不如去想象P和NP的解决之道,在其中探索一些新的方向,发掘出其中不可能的可能性。


全篇完结·心得体会

终于..在年后繁忙的工作与生活交织拉扯当中,今天完成了全篇内容的撰写,同时十分抱歉因为写作过程中诸多欠考虑因素,可能会造成篇幅仍过于冗长、繁杂的阅读体会,而且在内容的表述和思考的阐释过程中,如上篇最后体会中所说,我自己感觉仍没有找到一个更加适合的形式化表达工具或方法来阐释核心要点内容,即通过文字语言的形式。再次跟大家抱歉!

最后,关于本篇文章,还是想多啰嗦几句自己的初衷:

在写完这篇文章外加最近外界的诸多新闻,似乎更坚定了我对AGI实现的确定性,因此回到我最初想要写这篇文章前其中的一个分非常重要的目的同时也非常迫切的希望我们需尽快完善AI进行综合安全监管和治理上的考虑,正如Hitton的担忧与后悔:自己正在成为下一个曼哈顿计划的始作俑者,包括我们每一个人,包括我自己。

不管未来的AGI的实现路径是基于LLMs自回归一直暴力scaling prediction下去,还是沿着LeCun的世界模型路径缓慢的摸索前进,还是即将到来的下几代GPT中出现了真正通往AGI的Q-star,亦或sora变成了真正的世界模拟器,我想不管人类最终探索出上述通往AGI路途中的哪种路径,采用那种模型结构,运用哪些数学变换方法,还是最终找到了创造无限的数据构象分布并建立全域pattern的可能,最终结合本文回归第一性原理的思考,在这个世界中推理认知的模式和对人类产生的影响的本质方面,我想都是值得我们每一位伙伴深思并做出正确的人类发展历程中的决定的。

目前,看起来现在已经没有什么能够阻止奥特曼率领的OpenAI了大跨步前进了,而其所尊崇的scaling law也许会成为阻止其吞噬真实世界的最后屏障,而此scaling law非彼scaling law,似乎只有期待在自然法则下无休止的scaling law也许并不被允许的可能,就像在我们的真实世界中并没有演化出无限制scaling的超级合体一样,也许这个世界还存在着另一个restricting law吧。

也期待自己这篇文章的能够最大价值的发挥出一定的作用:

1. 激发大家对大模型的创新的热情和警惕性,带给大家一些回归一次性原理的思考方法,并尝试洞悉未来AGI的内涵,以便届时我们能有一些好的办法来应对。

2. 未来希望可以作为长文本上下文prompt到某个LLMs中,以促进开源社区的进一步探索和治理。

最后,随着近期逐步更新,我想全文快接近10万字了,因为平日工作也异常繁(内)忙(卷),只有占用自己闲暇时间一个一个字码完,能写完着实也是挺耗费精力的,也希望大家看在字数上面如果可以的话多帮忙转发,让更多的人看到,感谢!

最后的PS:本篇文章完全非类GPT LLM生成!

往期精选内容回顾:

融合RL与LLM思想,探寻世界模型以迈向AGI「上篇」

融合RL与LLM思想,探寻世界模型以迈向AGI「中/下篇」

融合RL与LLM思想,探寻世界模型以迈向AGI「合集」·

另外,最终合集版针对本篇更新又做了v5.1版更新,大家可访问百度网盘地址自行下载:

链接: https://pan.baidu.com/s/1FA9TgvbFJOjuPJUtcM5aBQ?pwd=lm51

提取码: lm51

或扫码下载

  • 37
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值