生成式AI科普文

概念

什么是生成式AI

是一种利用算法自动生成、操纵或合成数据的技术。

原理

chatGPT白话原理

参考chatGPT介绍

  • 单字接龙,给模型任意长度的一串文字,模型生成下一个字,然后再带回到模型中,继续得到下一个字,以此递归,自回归生成
  • 相同的上文给不同的模型会生成不同的字,模型训练就是通过大量的输入,让其学习,不断的调整模型参数,使得生成得字有逻辑。如果给定得上文,模型判断有多个可能成得字,则模型根据概率来进行抽样,抽样具有随机性,所以相同得上文得到的字是不一样的。
  • 如何回答问题?通过已有的问答,让模型学习规律,当遇到没见过的问题时能根据规律给出答案。回归。不同于搜索引擎。模型不存问答数据,只是通过大量数据来调整模型。
  • 搜索引擎通过查数据库来获得结果,数据库没有的结果不能响应。生成式ai可以根据已有数据总结的规律,应对之前没有遇到过的问题,但是有可能出现模型混淆,即现时中不存在的问题如果符合某些模型的规律,则也会按照规律给出结果。对于事实性问题,可能回答的胡编乱造
  • 模型只能训练,而不能直接调整指定问题的输出结果,使用时可能带来不可预知的结果,存在风险。只能通过再训练模型,但是只能通过提问获取结果,可能存在矫枉过正。效率低下
    chatGPT的原理
    chatGPT的训练过程
    chatGPT学习过程的专业术语
    三阶段总结
    涌现出新能力
    大语言模型

使用的技术

GAN(生成对抗网络)、VAE(变分自编码器)和RNN(循环神经网络)
监督精调、人类反馈的强化学习、提示、知识增强、检索增强和对话增强等

人工智能经历的几个阶段(大模型是人工智能的新阶段)

  1. 规则系统 ifx then y
    定义规则表达式,如常见的基于分箱的模型,专家模型
  2. 机器学习 f(x)=y
    让计算机寻找数据的规律,一般是特定领域的应用
  3. 深度学习 f~(x)=y
    比机器学习的范围更大,也是针对于特定领域,不具备通用性。如通过深度学习 回归得到的一个万能公式,如企业esg评分的公式,需要至少几百万的客户来训练,让模型找到数据间的规律
  4. 大模型fv(x)=x极强的泛化能力
    模型的参数多,如chatGPT有超过100万亿个参数。具备极强的泛化能力,各种场景均适用,而不需要调整模型本身。

可能的应用场景

文心一言的技术优势参考-发布会内容
大语言模型
精通语言、
存储语言(知识的积累、产生、延续)、
自然语言处理技术、
跟各行业结合、
chatGPT的社会影响

<think>好的,用户想了解人工智能的基础知识和科普信息。首先,我需要明确用户的需求,他们可能对AI的定义、分类、核心技术以及应用场景感兴趣。根据提供的引用,引用[1]提到了强AI、AGI和ASI,还有AI、深度学习和机器学习的关系。引用[2]介绍了AI的实际应用,比如语音助手和自动驾驶。引用[3]则讨论了AI算法的基础。 接下来,我需要将这些信息整合成一个结构清晰的回答。先从定义开始,区分强AI和弱AI,然后介绍核心技术如机器学习和深度学习,接着讲应用场景,最后讨论现状和未来趋势。要确保使用正确的中文术语,并按照用户的要求使用LaTeX格式,比如变量用$...$,独立公式用$$...$$。 要注意用户可能对技术细节不太熟悉,所以需要避免过于专业的术语,用通俗易懂的语言解释。例如,解释监督学习和无监督学习时,可以举例子说明。同时,生成的相关问题要围绕用户的需求,帮助他们进一步探索,比如AI的伦理问题或者学习路径。 另外,检查是否有遗漏的重要点,比如AI的发展历程或者当前的热点技术,如生成式AI(如ChatGPT)。需要确保引用正确,比如在提到强AI时引用[1],应用场景时引用[2]和[3]。 最后,确保回答符合格式要求,使用中文,正确应用引用标识,并且在末尾生成相关问题。可能的问题包括AI的分类、核心技术、应用场景、挑战等,这样用户可以根据兴趣深入阅读。</think>### 人工智能科普介绍 #### 1. **定义与分类** 人工智能(Artificial Intelligence, AI)是计算机科学的分支,旨在开发能够模拟人类智能行为的系统。根据能力范围,可分为: - **弱人工智能(Narrow AI)**:专注于特定任务,如语音识别(Siri)、图像分类(人脸识别)[^2]。 - **强人工智能(AGI)**:理论上的通用智能,具备人类水平的推理、学习和自我意识[^1]。 - **超级人工智能(ASI)**:超越人类智能的形态,目前仅存在于科幻作品中(如《2001太空漫游》的HAL)[^1]。 #### 2. **核心技术** AI的实现依赖于以下技术: - **机器学习(Machine Learning)**:通过数据训练模型,例如: - 监督学习:输入数据带标签,如分类问题(识别手写数字$y = f(x)$)。 - 无监督学习:数据无标签,如聚类分析(客户分群)。 - **深度学习(Deep Learning)**:基于神经网络的复杂模型,例如卷积神经网络(CNN)用于图像识别: $$ \text{CNN}(x) = \sigma(W * x + b) $$ - **自然语言处理(NLP)**:如ChatGPT通过Transformer架构生成文本。 #### 3. **应用场景** - **生活场景**:智能家居(温控系统)、推荐算法(Netflix影视推荐)[^2]。 - **工业领域**:预测性维护(通过传感器数据预判设备故障)。 - **医疗健康**:医学影像分析(肺癌早期筛查准确率超90%)。 #### 4. **现状与挑战** - **当前主流**:弱AI已广泛应用,但强AI仍无实际案例[^1]。 - **关键挑战**:数据隐私(GDPR合规性)、算法偏见(招聘系统中的性别歧视)、能耗问题(训练GPT-3耗电量相当于120个家庭年用电量)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值