连续不等_高等数学之微积分中不等式的证明方法总结

本文总结了高等数学微积分中证明不等式的几种方法,包括利用函数单调性、拉格朗日中值定理、最值定理和泰勒公式。重点强调辅助函数构造的重要性,并通过题型分析和例题解析来展示这些方法的应用。
摘要由CSDN通过智能技术生成

不等式的证明题作为微分的应用经常出现在考研题中。利用函数的单调性证明不等式是不等式证明的基本方法。有时需要两次甚至三次连续使用该方法,其他方法可作为该方法的补充,辅助函数的构造仍是解决问题的关键。

证明方法总结:

(1)利用函数单调性证明不等式

若在(a,b)上总有f(x)的导数大于零,则函数f(x)在区间(a,b)上单调增加;若在(a,b)上总有f(x)的导数小于零,则函数f(x)在区间(a,b)上单调减少。

(2)利用拉格朗日中值定理证明不等式

对于不等式中含有f(b)-f(a)的因子,可考虑用拉格朗日中值定理先处理一下。

(3)利用函数的最值证明不等式

若函数f(x)在闭区间[a,b]上连续,则f(x)在区间[a,b]上存在最大值M和最小值m.

(4)利用泰勒公式证明不等式

如果要证明的不等式中,含有函数的二阶或二阶以上的导数,一般通过泰勒公式证明不等式。

不等式证明的难点也是辅助函数的构造,一般可以通过要证明的不等式分析得出要构造的辅助函数。

题型一:利用函数的单调性证明不等式

22c733b9e571ccbd8b4bf15a1a778cb8.png

分析:对要证明的不等式进行如下化简:

e0399fd73080b8ab0fd8d53ec800fadc.png

解:

a3150a9e8d835ec316bc774bd6f66806.png

备注:构造适当的辅助函数是解决问题的基础,有时需要两次利用函数的单调性证明不等式,有时需要对区间(a,b)进行分割,分别在小区间上讨论。

题型二:利用拉格朗日中值定理证明不等式

例2:

586ea24724e07523e2bac871d4bc13e1.png

分析:

87cdd5f04fd9b907b12a915b7045c9a3.png

解:

af53d743a9e99089d36a0588857c1185.png

备注:对于不等式中含有f(b)-f(a)的因子,可以考虑使用拉格朗日公式先处理一下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值