连续不等_Cauchy—Schwarz不等式及其常见证法

Cauchy—Schwarz不等式是一个十分常见的不等式,它的定义是:若x,y为内积空间的元素,则有

。当且仅当x和y线性相关时,等号成立。最常见的形式也是多数人初识此不等式的形式便是

进入初等微积分领域便有了积分形式的:若f(x),g(x)在[a,b]上连续,则

,当且仅当f(x)与g(x)线性相关时,等号成立。此形式在证明许多积分不等式中有着非常广泛的应用。

当然,Cauchy—Schwarz不等式还有概率论形式等其他许多种,但殊途同归。本文暂讨论式

的四种常见的证明形式:

法1.定积分定义法

根据定积分的定义:将[a,b]分等为n个小区间,当n

,也即 小区间的长度
→0时,
,g(x)同理

于是,利用式(1),并将

提出来(记为
),有:

=

根据极限的保不等式性,有

,即

法2.构造变上限积分函数

,显然
。而

对于积分变量t,x与t无关,故:

,当且仅当f(x)g(t)=f(t)g(x),即f(t)与g(t)线性相关时,导函数恒为0,
,即原不等式等号成立。

法3.构造二次函数

与式(1)相同,式(2)也可以看作是是某个二次函数的判别式

,故只需构造一个相关的二次函数,并证明此二次函数恒
或恒

.对于积分变量x,t与x无关,故:

当且仅当f(x)与g(x)线性相关时,等号成立。

法4.二重积分法

引理:在矩形区域D:

上,
。说明在矩形区域内,二重积分可与两个定积分的乘积相互转化。

引理证明较简单,不做赘述。

于是取正方形区域D:[a,b]

[a,b],则:

显然,如果上式中右端交换x和y,依然与左端相等,于是右端可以变形为:

,根据平均值不等式:

再运用引理处理右端:

当且仅当对区域D内的x,y都有f(x)g(y)=f(y)g(x),即f(x),g(x)成比例时,等号成立。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值