学习笔记--目标分类10 SENet

1、归纳

本研究提出了压缩(sequeeze)和激励(Excitation)构成的通道维度的attention模块,即插即用并非完整的网络模型。略微增加计算成本。并将其使用在不同的经典网络及轻量化网络上,得到精度验证。

2、论文

相关研究

一、注意力机制、
1数学角度、是一种权重模式进行运算
2卷积角度,利用一些网络层计算得到特征图对应的权重值
3一种即插即用
4本质:设计一些卷积层输出权重值
具体操作为:在原有的模块中再加入一个分支,计算权重,得到的权重再与原来的进行相乘,就得到了具有注意力机制的特征图
二、STNet、
STNet通过spatial transformer将形变的,位置偏离的图像变换到图像中间,使得网络对空间变换更鲁棒
在这里插入图片描述在这里插入图片描述

三、attention resnet、
一般注意力都需要额外加分支,此处的注意力只要在一个前向过程中提取模型的attention就可以了
在这里插入图片描述
T(x)*(M(x)+1)即T(x)*M(x)+T(x)残差思想
四、CBAM
在这里插入图片描述

ILSVRC

2017结束,错误率达到2.25
在这里插入图片描述

SE block

1squeeze:global information embedding
采用全局池化,即压缩H和W到1*1,利用1个像素来表示通道,实现低维嵌入
2excitation:Adaptive Recalibration
采用两个全连接层:中间的神经元个数为C/r,两边的神经元个数为C,第一个FC用relu,第二个FC用sigmoid。r实验后16比较好
3scale:将得到的权重向量与通道的乘法
在这里插入图片描述

不同的block

SE block只重构特征图,不改变原来的结构
在这里插入图片描述

在这里插入图片描述

SE Block的使用及带来的参数量

每个residual block后嵌入SE block
在这里插入图片描述
在这里插入图片描述

注意

1论文中block有的地方也称module
2消融实验ablation study

推荐论文

1可视化卷积结果,帮助理解卷积
2CAM、Grad-CAM、Grad-CAM++

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值