Cursor-- 大语言模型使用

Cursor是一款强大的学习工具,提供中文界面,强化代码技能。而Tomchat则是一个支持GPT4、GPT3.5及Claude2的聊天平台,具备AI绘画和长篇写作功能,每日有免费使用次数。快来体验这些高效工具的魅力吧!

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高效学习工具/平台推荐(Cursor)

官网下载:点我

在这里插入图片描述

点击设置

在这里插入图片描述

在这里插入图片描述

设置中文:

在这里插入图片描述

界面设置中文

在这里插入图片描述

代码能力

在这里插入图片描述

看它会不会讲个笑话在这里插入图片描述

最后来个视频展示,看看他的速度

在这里插入图片描述

更多请查看:点我

有没有非常好用!有没有非常好用!有没有非常好用!

希望得到大家一个免费的关注

### 如何在本地环境中使用大型预训练模型执行游标操作 #### 设备兼容性和性能考量 对于希望在本地运行大型预训练模型的用户来说,设备性能是一个重要的考虑因素。由于大多数用户的计算资源可能不如最新款式的高端笔记本或台式机强大,这使得直接在客户端上部署复杂的AI应用变得具有挑战性[^1]。 尽管如此,在某些情况下仍然可以在本地环境有效地利用这些先进的技术成果。为了克服硬件局限并优化用户体验,可以采取一些策略: - **选择轻量级本**: 许多大模型提供简化或其他形式的小型化变体,它们能在保持一定精度的同时减少所需的运算能力。 - **量化处理**: 将浮点数转换成整数表示能够显著降低内存占用和加速推理过程而不明显损失准确性。 - **分布式计算框架**: 如果条件允许的话,可以通过网络连接多个较低端机器形成集群来进行更高效的并行计算任务分发。 #### 安装必要的软件包 要开始使用Python环境下基于transformers库的大规模自然语言处理(NLP),首先需要确保已正确设置了开发平台。这里以Linux为例介绍一种常见的初始化方法——通过Miniconda来管理依赖关系: ```bash ./Miniconda3-latest-Linux-x86_64.sh ``` 此命令将会启动一个交互式的安装向导程序帮助完成后续配置工作[^3]。 #### 加载预训练模型与创建游标对象 一旦有了适当的工作站设置之后就可以着手准备加载特定领域的预训练权重文件了。下面给出了一段简单的代码片段用于展示如何实例化`transformer`中的BERT类,并定义了一个名为`cursor`的对象模拟数据库查询指针的行为模式: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') def create_cursor(texts): inputs = tokenizer.batch_encode_plus( texts, padding=True, truncation=True, max_length=512, return_tensors="pt" ) outputs = model(**inputs)[0] cursor_position = 0 class Cursor: def __init__(self, embeddings): self.embeddings = embeddings def next(self): nonlocal cursor_position if cursor_position >= len(self.embeddings): raise StopIteration() current_embedding = self.embeddings[cursor_position].detach().numpy() cursor_position += 1 return current_embedding return Cursor(outputs) texts = ["Example sentence one.", "Another example here."] cursor = create_cursor(texts) print(cursor.next()) ``` 这段脚本展示了怎样构建自定义迭代器风格的数据访问接口,它可以从给定文本列表中逐条读取经过编码后的特征向量序列。值得注意的是,这里的“游标”概念并非传统意义上的SQL语句执行上下文内的位置指示符;而是借用其意象表达对连续流式数据进行有序遍历的能力。
评论 114
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一晌小贪欢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值