kruskal算法【最小生成树2】

G=VE)是无向连通带权图V={12,…,n}

设最小生成树T=VTE),该树的初始状态为只有n个顶点无边的非连通图T=V{}),Kruskal算法将这n个顶点看成是n个孤立的连通分支

 

它首先将所有的边按权值从小到大排序,然后只要T中选中的边数不到n-1,就做如下的贪心选择:

在边集E中选取权值最小的边(ij,如果将边(ij)加入集合TE不产生回路(圈),则将边(ij)加入边集TE中,即用边(ij)将这两个连通分支合并连接成一个连通分支;

否则继续选择下一条最短边。把边(ij)从集合E中删去。

 

继续上面的贪心选择,直到T中所有顶点都在同一个连通分支上为止

此时,选取到的n-1条边恰好构成G一棵最小生成树T

 

那么,怎样判断加入某条边后图T会不会出现回路呢?

该算法对于手工计算十分方便,因为用肉眼可以很容易看到挑选哪些边能够避免构成回路(避圈法),但使用计算机程序来实现时,还需要一种机制来进行判断。

 

Kruskal算法用了一个非常聪明的方法,就是运用集合避圈

如果所选择加入的边的起点和终点都在T的集合中,那么就可以断定一定会形成回路(圈)。其实就是我们前面提到的“避圈法”:边的两个结点不能属于同一集合

 

步骤1:初始化。将图G的边集E中的所有边按权值从小到大排序,边集TE={},把每个顶点都初始化为一个孤立的分支,即一个顶点对应一个集合

步骤2:在E中寻找权值最小的边(ij

步骤3:如果顶点i和位于两个不同连通分支,则将边(ij)加入边集TE,并执行合并操作,将两个连通分支进行合并【即两个顶点设置成同一个集合号,一般向小集合号合并】。

步骤4:将边(ij)从集合E中删去,即E=E-{ij}

步骤5:如果选取边数小于n-1,转步骤2;否则,算法结束,生成最小生成树了。

 

适用范围:要求无向图

kruskal算法(读者可以将其读作“克鲁斯卡尔算法”同样是解决最小生成树问题的一个算法。和prim算法不同,kruskal算法采用了边贪心的策略,其思想极其简洁,理解难度比prim算法要低很多。

 

kruskal算法的基本思想为:在初始状态时隐去图中的所有边,这样图中每个顶点都自成一个连通块。

之后执行下面的步骤:

①对所有边按边权从小到大进行排序。

②按边权从小到大测试所有边,如果当前测试边所连接的两个顶点不在同一个连通块中,则把这条测试边加入当前最小生成树中;否则,将边舍弃。

③执行步骤②,直到最小生成树中的边数等于总顶点数减1或是测试完所有边时结束

而当结束时如果最小生成树的边数小于总顶点数减1,说明该图不连通。

接下来以图10-51a为例,给出对该图执行kruskal算法的步骤。

①当前图中边权最小的边为VV,权值为1。由于VoV4在不同的连通块中,因此把边VoVa加入最小生成树中,此时最小生成树中有1条边,权值之和为1,如图10-51所示。

 

因此,kruskal算法的思想简单说来就是:

每次选择图中最小边权的边,如果边两端的顶点在不同的连通块中,就把这条边加入最小生成树中。

 

//边集定义部分
struct edge
{
    int u,v;//边的两个端点编号
    int cost;//边权
}E[MAXE];//最多有MAXE条边
 
bool cmp(edge a,edge b)
{
    return a.cost <b.cost;
}
 
//并查集部分
int father[MAXV];//并查集数组
int findFather(int x)
{//并查集查询函数
    int a=x;
    while(x!=father[x])
        x=father[x];
    //路径压缩
    while(a!=father[a])
    {
        int z = a;
        a = father[a];
        father[z]=x;
    }
    return x;
}
 
//kruskal部分,返回最小生成树的边权之和,参数n为顶点个数,m为图的边数
int kruskal(int n,int m)
{//ans为所求边权之和,Num Edge为当前生成树的边数
    int ans=0,Num Edge=0;
    for(int i=0;i<n;i++)//顶点范围是[0,n-1]
        father[i]=i;//并查集初始化
    sort(E,E+m,cmp);//所有边按边权从小到大排序
    for(int i=0;i<m;i++)
    {//枚举所有边 
        int faU=findFather(E[i].u);//查询测试边两个端点所在集合的根结点
        int faV=findFather(E[i].v);
        if(faU!=faV)
        {//如果不在一个集合中
            father[faU]=faV;//合并集合(即把测试边加入最小生成树中)
            ans += E[i].cost;//边权之和增加测试边的边权
            Num_Edge++;//当前生成树的边数加1
            if(Num_Edge == n-1)
                break;//边数等于顶点数减1时结束算法
        }
    }
    if(Num_Edge!=n-1)
        return -1;//无法连通时返回-1
	else 
        return ans;//返回最小生成树的边权之和
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值