三角函数求导积分公式(六边形记忆法)速记!

__轰开和轮胎
( tan ⁡ x ) ′ = sec ⁡ 2 x ∫ sec ⁡ 2 x = tan ⁡ x + C ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x ∫ sec ⁡ x tan ⁡ x = sec ⁡ x + C ( cot ⁡ x ) ′ = − csc ⁡ 2 x ∫ csc ⁡ 2 x = − cot ⁡ x + C ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x ∫ csc ⁡ x cot ⁡ x = − csc ⁡ x + c ∫ tan ⁡ x = ln ⁡ ∣ sec ⁡ x + sec ⁡ x ∣ + C = ln ⁡ ∣ sec ⁡ x ∣ + C ∫ sec ⁡ x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ∫ cot ⁡ x = − ln ⁡ ∣ csc ⁡ x + csc ⁡ x ∣ + C = ln ⁡ ∣ sin ⁡ x ∣ + C ∫ csc ⁡ x = − ln ⁡ ∣ csc ⁡ x + cot ⁡ x ∣ + C ∫ sec ⁡ 3 x = 1 2 [ sec ⁡ x tan ⁡ x + ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ ] + C ∫ csc ⁡ 3 x = − 1 2 [ csc ⁡ x cot ⁡ x + ln ⁡ ∣ csc ⁡ x + cot ⁡ x ∣ ] + C ∫ d x a 2 + x 2 = 1 a arctan ⁡ x a + C ∫ d x a 2 − x 2 = arcsin ⁡ x a + C ∫ d x x 2 ± a 2 = ln ⁡ ∣ x + x 2 ± a 2 ∣ + C  塞进去弹出来   a在前用arc  \begin{array}{l}(\tan x)^{\prime}=\sec ^{2} x \quad \quad \int \sec ^{2} x=\tan x+C \\(\sec x)^{\prime}=\sec x \tan x \quad \quad \int \sec x \tan x=\sec x+C \\(\cot x)^{\prime}=-\csc ^{2} x \quad \quad \int \csc ^{2} x=-\cot x+C \\(\csc x)^{\prime}=-\csc x \cot x \quad \int \csc x \cot x=-\csc x+c \\\int \tan x=\ln |\sec x+\sec x|+C=\ln |\sec x|+C \\\int \sec x=\ln |\sec x+\tan x|+C \\\int \cot x=-\ln |\csc x+\csc x|+C=\ln |\sin x|+C \\\int \csc x=-\ln |\csc x+\cot x|+C \\\int \sec ^{3} x=\frac{1}{2}[\sec x \tan x+\ln |\sec x+\tan x|]+C \\\int \csc ^{3} x=-\frac{1}{2}[\csc x \cot x+\ln |\csc x+\cot x|]+C \\\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C \quad \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C \\\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C \\\text { 塞进去弹出来 } \\\text { a在前用arc }\end{array} (tanx)=sec2xsec2x=tanx+C(secx)=secxtanxsecxtanx=secx+C(cotx)=csc2xcsc2x=cotx+C(cscx)=cscxcotxcscxcotx=cscx+ctanx=lnsecx+secx+C=lnsecx+Csecx=lnsecx+tanx+Ccotx=lncscx+cscx+C=lnsinx+Ccscx=lncscx+cotx+Csec3x=21[secxtanx+lnsecx+tanx]+Ccsc3x=21[cscxcotx+lncscx+cotx]+Ca2+x2dx=a1arctanax+Ca2x2 dx=arcsinax+Cx2±a2 dx=ln x+x2±a2 +C 塞进去弹出来  a在前用arc 
在这里插入图片描述

  • 如何记忆sinx 的倒数是cscx ?
    • s往后移动1位,只能是csc.
  • 如何记忆cosx 的倒数是secx ?
    • s往后移动1位,只能是sec.
三角函数的导数和积分是注册土木工程师岩土基础考试中的重要知识点。要解决实际工程中的力学问题,比如土压力计算、结构稳定性分析等,都可能用到这些公式。下面我将列出几个重要的三角函数导数积分公式,并简要说明它们的应用场景。 参考资源链接:[土木工程师岩土基础考试必背公式集锦](https://wenku.csdn.net/doc/ih9edyduja?spm=1055.2569.3001.10343) 导数公式: 1. (sin(x))' = cos(x) 2. (cos(x))' = -sin(x) 3. (tan(x))' = sec^2(x) 4. (cot(x))' = -csc^2(x) 5. (sec(x))' = sec(x)tan(x) 6. (csc(x))' = -csc(x)cot(x) 这些导数公式在工程中应用广泛,比如在分析波浪对结构物的作用力时,需要使用正弦函数描述波形,通过导数可以求得波浪的速度。 积分公式: 1. ∫sin(x)dx = -cos(x) + C 2. ∫cos(x)dx = sin(x) + C 3. ∫tan(x)dx = -ln|cos(x)| + C 4. ∫cot(x)dx = ln|sin(x)| + C 5. ∫sec(x)dx = ln|sec(x)+tan(x)| + C 6. ∫csc(x)dx = -ln|csc(x)+cot(x)| + C 积分公式在计算工程结构的变形和位移时特别重要。例如,在计算简支梁的挠度时,可能会涉及到复杂的积分运算。 工程应用中,三角函数的导数和积分不仅用于简单的数学运算,更重要的是它们能够帮助工程师求解更复杂的问题,如运动学分析、振动分析、信号处理等。备考者需要熟练掌握这些公式,并能够将它们灵活运用到实际问题的解决中。 为了更深入地理解这些公式及其在岩土工程中的应用,建议参考《土木工程师岩土基础考试必背公式集锦》。这份资料详细列出了各类考试所需的公式,包括导数、积分以及三角函数的诱导公式等,并提供了各种工程应用的例题,有助于考生全面掌握并应用这些数学工具。 参考资源链接:[土木工程师岩土基础考试必背公式集锦](https://wenku.csdn.net/doc/ih9edyduja?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值