__轰开和轮胎
(
tan
x
)
′
=
sec
2
x
∫
sec
2
x
=
tan
x
+
C
(
sec
x
)
′
=
sec
x
tan
x
∫
sec
x
tan
x
=
sec
x
+
C
(
cot
x
)
′
=
−
csc
2
x
∫
csc
2
x
=
−
cot
x
+
C
(
csc
x
)
′
=
−
csc
x
cot
x
∫
csc
x
cot
x
=
−
csc
x
+
c
∫
tan
x
=
ln
∣
sec
x
+
sec
x
∣
+
C
=
ln
∣
sec
x
∣
+
C
∫
sec
x
=
ln
∣
sec
x
+
tan
x
∣
+
C
∫
cot
x
=
−
ln
∣
csc
x
+
csc
x
∣
+
C
=
ln
∣
sin
x
∣
+
C
∫
csc
x
=
−
ln
∣
csc
x
+
cot
x
∣
+
C
∫
sec
3
x
=
1
2
[
sec
x
tan
x
+
ln
∣
sec
x
+
tan
x
∣
]
+
C
∫
csc
3
x
=
−
1
2
[
csc
x
cot
x
+
ln
∣
csc
x
+
cot
x
∣
]
+
C
∫
d
x
a
2
+
x
2
=
1
a
arctan
x
a
+
C
∫
d
x
a
2
−
x
2
=
arcsin
x
a
+
C
∫
d
x
x
2
±
a
2
=
ln
∣
x
+
x
2
±
a
2
∣
+
C
塞进去弹出来
a在前用arc
\begin{array}{l}(\tan x)^{\prime}=\sec ^{2} x \quad \quad \int \sec ^{2} x=\tan x+C \\(\sec x)^{\prime}=\sec x \tan x \quad \quad \int \sec x \tan x=\sec x+C \\(\cot x)^{\prime}=-\csc ^{2} x \quad \quad \int \csc ^{2} x=-\cot x+C \\(\csc x)^{\prime}=-\csc x \cot x \quad \int \csc x \cot x=-\csc x+c \\\int \tan x=\ln |\sec x+\sec x|+C=\ln |\sec x|+C \\\int \sec x=\ln |\sec x+\tan x|+C \\\int \cot x=-\ln |\csc x+\csc x|+C=\ln |\sin x|+C \\\int \csc x=-\ln |\csc x+\cot x|+C \\\int \sec ^{3} x=\frac{1}{2}[\sec x \tan x+\ln |\sec x+\tan x|]+C \\\int \csc ^{3} x=-\frac{1}{2}[\csc x \cot x+\ln |\csc x+\cot x|]+C \\\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C \quad \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C \\\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C \\\text { 塞进去弹出来 } \\\text { a在前用arc }\end{array}
(tanx)′=sec2x∫sec2x=tanx+C(secx)′=secxtanx∫secxtanx=secx+C(cotx)′=−csc2x∫csc2x=−cotx+C(cscx)′=−cscxcotx∫cscxcotx=−cscx+c∫tanx=ln∣secx+secx∣+C=ln∣secx∣+C∫secx=ln∣secx+tanx∣+C∫cotx=−ln∣cscx+cscx∣+C=ln∣sinx∣+C∫cscx=−ln∣cscx+cotx∣+C∫sec3x=21[secxtanx+ln∣secx+tanx∣]+C∫csc3x=−21[cscxcotx+ln∣cscx+cotx∣]+C∫a2+x2dx=a1arctanax+C∫a2−x2dx=arcsinax+C∫x2±a2dx=ln
x+x2±a2
+C 塞进去弹出来 a在前用arc
- 如何记忆sinx 的倒数是cscx ?
- s往后移动1位,只能是csc.
- 如何记忆cosx 的倒数是secx ?
- s往后移动1位,只能是sec.