Accelerating CNNs Using GPUs
The extensive calculations required for training CNN models and running inference through trained CNN models can be quite large in number, requiring intensive compute resources and time. Deep learning frameworks such as Caffe, TensorFlow, and PyTorch, are optimized to run faster on GPUs. The frameworks take advantage of the parallel processing capabilities of a GPU if it is present, speeding up training and inference tasks.
The Jetson Nano includes a 128-core NVIDIA Maxwell GPU. Since it can run the full training frameworks, it is also able to re-train networks with transfer learning, a capability you will use in the projects for this course. Jetson Nano enables you to experiment with deep learning and AI on a low-cost platform. See this article for more details on Jetson Nano performance.
本句可以说明,Jetson Nano可以用GPU来做模型的训练。