NVIDIA Deep Learning学习笔记

Accelerating CNNs Using GPUs

The extensive calculations required for training CNN models and running inference through trained CNN models can be quite large in number, requiring intensive compute resources and time. Deep learning frameworks such as Caffe, TensorFlow, and PyTorch, are optimized to run faster on GPUs. The frameworks take advantage of the parallel processing capabilities of a GPU if it is present, speeding up training and inference tasks.

frameworks

The Jetson Nano includes a 128-core NVIDIA Maxwell GPU. Since it can run the full training frameworks, it is also able to re-train networks with transfer learning, a capability you will use in the projects for this course. Jetson Nano enables you to experiment with deep learning and AI on a low-cost platform. See this article for more details on Jetson Nano performance.

【转自】https://courses.nvidia.com/courses/course-v1:DLI+C-RX-02+V1/courseware/b2e02e999d9247eb8e33e893ca052206/26aa9f8bdaa948d9b068a8275c89e546/?child=first

本句可以说明,Jetson Nano可以用GPU来做模型的训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值